Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3424, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654023

RESUMEN

Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral ß3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.


Asunto(s)
Antibacterianos , Membrana Celular , Simulación de Dinámica Molecular , Antibacterianos/farmacología , Antibacterianos/química , Membrana Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología , Microscopía Electrónica , Bacterias Gramnegativas/efectos de los fármacos , Escherichia coli/efectos de los fármacos
2.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203789

RESUMEN

The epithelial ion channel TRPV6 plays a pivotal role in calcium homeostasis. Channel function is intricately regulated at different stages, involving the lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Given that dysregulation of TRPV6 is associated with various diseases, including different types of cancer, there is a compelling need for its pharmacological targeting. Structural studies provide insights on how TRPV6 is affected by different inhibitors, with some binding to sites else occupied by lipids. These include the small molecule cis-22a, which, however, also binds to and thereby blocks the pore. By combining calcium imaging, electrophysiology and optogenetics, we identified residues within the pore and the lipid binding site that are relevant for regulation by cis-22a and PIP2 in a bidirectional manner. Yet, mutation of the cytosolic pore exit reduced inhibition by cis-22a but preserved sensitivity to PIP2 depletion. Our data underscore allosteric communication between the lipid binding site and the pore and vice versa for most sites along the pore.


Asunto(s)
Calcio , Fosfatidilinositoles , Canales Catiónicos TRPV , Sitios de Unión , Citosol , Fosfatidilinositoles/metabolismo , Canales Catiónicos TRPV/metabolismo
3.
Bioconjug Chem ; 34(10): 1738-1753, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37606258

RESUMEN

The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNγ and TNFα over PM1 formulated in the Sigma Adjuvant System.


Asunto(s)
Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Leucocitos Mononucleares , Antígenos Bacterianos , Linfocitos T CD4-Positivos , Tuberculosis/prevención & control , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Péptidos
4.
J Nat Prod ; 86(4): 672-682, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857518

RESUMEN

Diphyllin (1) and justicidin B (2) are arylnaphthalene lignans with antiviral and antiproliferative effects. Compound 1 is also known as an effective inhibitor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To evaluate the in vitro antiviral and cytotoxic potency of both lignans in SARS-CoV-2 -infected cells and various cancer cell lines, respectively, 1 and 2 were isolated from the underground organs of Linum austriacum and Linum perenne. Two previously undescribed arylnaphthalene lignans, denominated linadiacin A and B (3 and 4), were also isolated and identified. In acidic media, 3 was converted by a two-step reaction into 2 via the intermediate 4. Optimum acid treatment conditions were determined to isolate lignans by one-step preparative high-performance liquid chromatography (HPLC). The results of the conversion, HPLC-tandem mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling studies allowed complete structure analysis. Compounds 1 and 2 were the most effective against SARS-CoV-2 with a 3-log reduction in the viral copy number at a 12.5 µM concentration. Ten human cancer cell lines showed sensitivity to at least one of the isolated lignans.


Asunto(s)
COVID-19 , Lino , Lignanos , Humanos , Lino/química , SARS-CoV-2 , Lignanos/química , Antivirales/farmacología , Antivirales/metabolismo , Estructura Molecular
5.
Front Immunol ; 12: 750496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867981

RESUMEN

One of the main hallmarks of tuberculosis (TB) is the ability of the causative agent to transform into a stage of dormancy and the capability of long persistence in the host phagocytes. It is believed that approximately one-third of the population of the world is latently infected with Mycobacterium tuberculosis (Mtb), and 5%-10% of these individuals can develop clinical manifestations of active TB even decades after the initial infection. In this latent, intracellular form, the bacillus is shielded by an extremely robust cell wall and becomes phenotypically resistant to most antituberculars. Therefore, there is a clear rationale to develop novel compounds or carrier-conjugated constructs of existing drugs that are effective against the intracellular form of the bacilli. In this paper, we describe an experimental road map to define optimal candidates against intracellular Mtb and potential compounds effective in the therapy of latent TB. To validate our approach, isoniazid, a first-line antitubercular drug was employed, which is active against extracellular Mtb in the submicromolar range, but ineffective against the intracellular form of the bacteria. Cationic peptide conjugates of isoniazid were synthesized and employed to study the host-directed drug delivery. To measure the intracellular killing activity of the compounds, Mtb-infected MonoMac-6 human monocytic cells were utilized. We have assessed the antitubercular activity, cytotoxicity, membrane interactions in combination with internalization efficacy, localization, and penetration ability on interface and tissue-mimicking 3D models. Based on these in vitro data, most active compounds were further evaluated in vivo in a murine model of TB. Intraperitoneal infectious route was employed to induce a course of slowly progressive and systemic disease. The well-being of the animals, monitored by the body weight, allows a prolonged experimental setup and provides a great opportunity to test the long-term activity of the drug candidates. Having shown the great potency of this simple and suitable experimental design for antimicrobial research, the proposed novel assay platform could be used in the future to develop further innovative and highly effective antituberculars.


Asunto(s)
Péptidos Antimicrobianos/administración & dosificación , Antituberculosos/administración & dosificación , Bioensayo/métodos , Péptidos de Penetración Celular/administración & dosificación , Isoniazida/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Animales , Péptidos Antimicrobianos/química , Antituberculosos/química , Bronquios , Línea Celular , Péptidos de Penetración Celular/química , Endocitosis , Femenino , Humanos , Isoniazida/química , Ratones Endogámicos BALB C , Monocitos/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Reproducibilidad de los Resultados , Esferoides Celulares , Tuberculosis/tratamiento farmacológico
6.
Sci Rep ; 11(1): 18328, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526616

RESUMEN

In the emerging era of antimicrobial resistance, the susceptibility to co-infections of patients suffering from either acquired or inherited hemolytic disorders can lead to dramatic increase in mortality rates. Closely related, heme liberated during hemolysis is one of the major sources of iron, which is vital for both host and invading microorganisms. While recent intensive research in the field has demonstrated that heme exerts diverse local effects including impairment of immune cells functions, it is almost completely unknown how it may compromise key molecules of our innate immune system, such as antimicrobial host defense peptides (HDPs). Since HDPs hold great promise as natural therapeutic agents against antibiotic-resistant microbes, understanding the effects that may modulate their action in microbial infection is crucial. Here we explore how hemin can interact directly with selected HDPs and influence their structure and membrane activity. It is revealed that induced helical folding, large assembly formation, and altered membrane activity is promoted by hemin. However, these effects showed variations depending mainly on peptide selectivity toward charged lipids, and the affinity of the peptide and hemin to lipid bilayers. Hemin-peptide complexes are sought to form semi-folded co-assemblies, which are present even with model membranes resembling mammalian or bacterial lipid compositions. In vitro cell-based toxicity assays supported that toxic effects of HDPs could be attenuated due to their assembly formation. These results are in line with our previous findings on peptide-lipid-small molecule systems suggesting that small molecules present in the complex in vivo milieu can regulate HDP function. Inversely, diverse effects of endogenous compounds could also be manipulated by HDPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Hemo/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Resistencia a la Enfermedad , Hemo/química , Interacciones Huésped-Patógeno , Humanos , Cinética , Lípidos de la Membrana/metabolismo , Unión Proteica , Pliegue de Proteína
7.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918622

RESUMEN

A comparative phytochemical study on the phenylethanoid glycoside (PhEG) composition of the underground organs of three Plantago species (P. lanceolata, P. major, and P. media) and that of the fruit wall and seed parts of Forsythia suspensa and F. europaea fruits was performed. The leaves of these Forsythia species and six cultivars of the hybrid F. × intermedia were also analyzed, demonstrating the tissue-specific accumulation and decomposition of PhEGs. Our analyses confirmed the significance of selected tissues as new and abundant sources of these valuable natural compounds. The optimized heat treatment of tissues containing high amounts of the PhEG plantamajoside (PM) or forsythoside A (FA), which was performed in distilled water, resulted in their characteristic isomerizations. In addition to PM and FA, high amounts of the isomerization products could also be isolated after heat treatment. The isomerization mechanisms were elucidated by molecular modeling, and the structures of PhEGs were identified by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HR-MS) techniques, also confirming the possibility of discriminating regioisomeric PhEGs by tandem MS. The PhEGs showed no cytostatic activity in non-human primate Vero E6 cells, supporting their safe use as natural medicines and allowing their antiviral potency to be tested.


Asunto(s)
Forsythia/química , Glicósidos/química , Fitoquímicos/química , Plantago/química , Animales , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Forsythia/metabolismo , Glicósidos/metabolismo , Glicósidos/farmacología , Isomerismo , Conformación Molecular , Estructura Molecular , Especificidad de Órganos , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantago/metabolismo , Relación Estructura-Actividad , Células Vero
8.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671100

RESUMEN

Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives-TB501 and TB515-were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed.


Asunto(s)
Antituberculosos/farmacología , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos , Liposomas/administración & dosificación , Monocitos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Antituberculosos/química , Proliferación Celular , Células Cultivadas , Diseño de Fármacos , Humanos , Liposomas/química , Tuberculosis/microbiología
9.
ACS Pharmacol Transl Sci ; 4(1): 155-167, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33615169

RESUMEN

The host defense peptide LL-37 is the only human cathelicidin, characterized by pleiotropic activity ranging from immunological to anti-neoplastic functions. However, its overexpression has been associated with harmful inflammatory responses and apoptosis. Thus, for the latter cases, the development of strategies aiming to reduce LL-37 toxicity is highly desired as these have the potential to provide a viable solution. Here, we demonstrate that the reduction of LL-37 toxicity might be achieved by the impairment of its cell surface binding through interaction with small organic compounds that are able to alter the peptide conformation and minimize its cell penetration ability. In this regard, the performed cell viability and internalization studies showed a remarkable attenuation of LL-37 cytotoxicity toward colon and monocytic cells in the presence of the polysulfonated drug suramin. The mechanistic examinations of the molecular details indicated that this effect was coupled with the ability of suramin to alter LL-37 secondary structure via the formation of peptide-drug complexes. Moreover, a comparison with other therapeutic agents having common features unveiled the peculiar ability of suramin to optimize the binding to the peptide sequence. The newly discovered suramin action is hoped to inspire the elaboration of novel repurposing strategies aimed to reduce LL-37 cytotoxicity under pathological conditions.

10.
Cells ; 9(12)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333744

RESUMEN

The World Health Organization (WHO) herald of the "End TB Strategy" has defined goals and targets for tuberculosis prevention, care, and control to end the global tuberculosis endemic. The emergence of drug resistance and the relative dreadful consequences in treatment outcome has led to increased awareness on immunization against Mycobacterium tuberculosis (Mtb). However, the proven limited efficacy of Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mtb, has highlighted the need for alternative vaccines. In this review, we seek to give an overview of Mtb infection and failure of BCG to control it. Afterward, we focus on the protein- and peptide-based subunit vaccine subtype, examining the advantages and drawbacks of using this design approach. Finally, we explore the features of subunit vaccine candidates currently in pre-clinical and clinical evaluation, including the antigen repertoire, the exploited adjuvanted delivery systems, as well as the spawned immune response.


Asunto(s)
Péptidos/inmunología , Proteínas/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Vacunas de Subunidad/inmunología , Secuencia de Aminoácidos , Humanos , Péptidos/química , Tuberculosis/patología
11.
Int J Mol Sci ; 21(6)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235796

RESUMEN

Cell-penetrating peptides might have great potential for enhancing the therapeutic effect of drug molecules against such dangerous pathogens as Mycobacterium tuberculosis (Mtb), which causes a major health problem worldwide. A set of cationic cell-penetration peptides with various hydrophobicity were selected and synthesized as drug carrier of isoniazid (INH), a first-line antibacterial agent against tuberculosis. Molecular interactions between the peptides and their INH-conjugates with cell-membrane-forming lipid layers composed of DPPC and mycolic acid (a characteristic component of Mtb cell wall) were evaluated, using the Langmuir balance technique. Secondary structure of the INH conjugates was analyzed and compared to that of the native peptides by circular dichroism spectroscopic experiments performed in aqueous and membrane mimetic environment. A correlation was found between the conjugation induced conformational and membrane affinity changes of the INH-peptide conjugates. The degree and mode of interaction were also characterized by AFM imaging of penetrated lipid layers. In vitro biological evaluation was performed with Penetratin and Transportan conjugates. Results showed similar internalization rate into EBC-1 human squamous cell carcinoma, but markedly different subcellular localization and activity on intracellular Mtb.


Asunto(s)
Antituberculosos/administración & dosificación , Péptidos de Penetración Celular/metabolismo , Portadores de Fármacos/metabolismo , Isoniazida/administración & dosificación , Lípidos de la Membrana/metabolismo , Secuencia de Aminoácidos , Antituberculosos/química , Antituberculosos/farmacocinética , Línea Celular Tumoral , Péptidos de Penetración Celular/química , Portadores de Fármacos/química , Humanos , Isoniazida/química , Isoniazida/farmacocinética , Membrana Dobles de Lípidos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico
12.
Q Rev Biophys ; 53: e5, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32115014

RESUMEN

Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation. Model vesicle studies show that compared to dye-free DHVAR4, peptide-TZ complexes are more prone to form H-bonds with the phosphate ester moiety of the bilayer head-group region resulting in more controlled bilayer fusion mechanism and concerted severe cell damage. AMPs are considered as promising compounds to combat formidable antibiotic-resistant bacterial infections; however, we know very little on their in vivo actions, especially on how they interact with other chemical agents. The current example illustrates how food dyes can modulate AMP activity, which is hoped to inspire improved therapies against microbial infections in the alimentary tract. Results also imply that the structure and function of natural AMPs could be manipulated by small compounds, which may also offer a new strategic concept for the future design of peptide-based antimicrobials.


Asunto(s)
Antibacterianos/química , Membrana Celular/metabolismo , Colorantes de Alimentos/química , Histatinas/química , Péptidos/química , Animales , Transporte Biológico/efectos de los fármacos , Dicroismo Circular , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Monocitos/efectos de los fármacos , Fosfatos/química , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Streptococcus pneumoniae/efectos de los fármacos
13.
Vaccines (Basel) ; 7(3)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461944

RESUMEN

Epitopes from different proteins expressed by Mycobacterium tuberculosis (Rv1886c, Rv0341, Rv3873) were selected based on previously reported antigenic properties. Relatively short linear T-cell epitope peptides generally have unordered structure, limited immunogenicity, and low in vivo stability. Therefore, they rely on proper formulation and on the addition of adjuvants. Here we report a convenient synthetic route to induce a more potent immune response by the formation of a trivalent conjugate in spatial arrangement. Chemical and structural characterization of the vaccine conjugates was followed by the study of cellular uptake and localization. Immune response was assayed by the measurement of splenocyte proliferation and cytokine production, while vaccine efficacy was studied in a murine model of tuberculosis. The conjugate showed higher tendency to fold and increased internalization rate into professional antigen presenting cells compared to free epitopes. Cellular uptake was further improved by the incorporation of a palmitoyl group to the conjugate and the resulted pal-A(P)I derivative possessed an internalization rate 10 times higher than the free epitope peptides. Vaccination of CB6F1 mice with free peptides resulted in low T-cell response. In contrast, significantly higher T-cell proliferation with prominent expression of IFN-γ, IL-2, and IL-10 cytokines was measured for the palmitoylated conjugate. Furthermore, the pal-A(P)I conjugate showed relevant vaccine efficacy against Mycobacterium tuberculosis infection.

14.
J Colloid Interface Sci ; 549: 150-161, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31029843

RESUMEN

Carbon quantum dots (CQDs) are a novel family of fluorescent materials that could be employed as non-toxic alternatives to molecular fluorescent dyes in biological research and also in medicine. Four different preparation approaches, including microwave assisted heating and solvent refluxing, were explored. In addition to the widely used microwave assisted methods, a simple convenient new procedure is presented here for the particle synthesis. A detailed X-ray photoelectron spectroscopic (XPS) analysis was employed to characterize the composition, and more importantly, the chemical structure of the CQD samples and the interrelation of the characteristic surface chemical groups with the fluorescence properties and with surface polarity was unambiguously established. In vitro cellular internalization experiments documented their applicability as fluorescence labels while non-toxic properties were also approved. It was demonstrated that the adequate water-dispersibility of the particles plays a crucial role in their biological application. The synthetized CQD samples turned to be promising for cellular imaging applications both in laser illuminated flow cytometric measurements and in fluorescence microscopy.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/química , Microondas , Puntos Cuánticos/química , Solventes/química , Línea Celular , Colorantes Fluorescentes/toxicidad , Humanos , Tamaño de la Partícula , Puntos Cuánticos/toxicidad , Propiedades de Superficie
15.
Chembiochem ; 20(12): 1578-1590, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30720915

RESUMEN

Antimicrobial peptides (AMPs) kill bacteria by targeting their membranes through various mechanisms involving peptide assembly, often coupled with disorder-to-order structural transition. However, for several AMPs, similar conformational changes in cases in which small organic compounds of both endogenous and exogenous origin have induced folded peptide conformations have recently been reported. Thus, the function of AMPs and of natural host defence peptides can be significantly affected by the local complex molecular environment in vivo; nonetheless, this area is hardly explored. To address the relevance of such interactions with regard to structure and function, we have tested the effects of the therapeutic drug suramin on the membrane activity and antibacterial efficiency of CM15, a potent hybrid AMP. The results provided insight into a dynamic system in which peptide interaction with lipid bilayers is interfered with by the competitive binding of CM15 to suramin, resulting in an equilibrium dependent on peptide-to-drug ratio and vesicle surface charge. In vitro bacterial tests showed that when CM15⋅suramin complex formation dominates over membrane binding, antimicrobial activity is abolished. On the basis of this case study, it is proposed that small-molecule secondary structure regulators can modify AMP function and that this should be considered and could potentially be exploited in future development of AMP-based antimicrobial agents.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Suramina , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Células Cultivadas , Dicroismo Circular/métodos , Escherichia coli , Humanos , Membrana Dobles de Lípidos/química , Estructura Secundaria de Proteína , Suramina/química , Suramina/farmacología
16.
Eur J Med Chem ; 160: 94-107, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30321804

RESUMEN

Targeted covalent inhibitors have become an integral part of a number of therapeutic protocols and are the subject of intense research. The mechanism of action of these compounds involves the formation of a covalent bond with protein nucleophiles, mostly cysteines. Given the abundance of cysteines in the proteome, the specificity of the covalent inhibitors is of utmost importance and requires careful optimization of the applied warheads. In most of the cysteine targeting covalent inhibitor programs the design strategy involves incorporating Michael acceptors into a ligand that is already known to bind non-covalently. In contrast, we suggest that the reactive warhead itself should be tailored to the reactivity of the specific cysteine being targeted, and we describe a strategy to achieve this goal. Here, we have extended and systematically explored the available organic chemistry toolbox and characterized a large number of warheads representing different chemistries. We demonstrate that in addition to the common Michael addition, there are other nucleophilic addition, addition-elimination, nucleophilic substitution and oxidation reactions suitable for specific covalent protein modification. Importantly, we reveal that warheads for these chemistries impact the reactivity and specificity of covalent fragments at both protein and proteome levels. By integrating surrogate reactivity and selectivity models and subsequent protein assays, we define a road map to help enable new or largely unexplored covalent chemistries for the optimization of cysteine targeting inhibitors.


Asunto(s)
Cisteína/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Cisteína/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Estructura Molecular , Relación Estructura-Actividad
17.
Amino Acids ; 50(11): 1557-1571, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30099595

RESUMEN

Fluorescent labelling is a common approach to reveal the molecular details of cellular uptake, internalisation, transport, distribution processes in biological systems. The conjugation with a fluorescent moiety might affect relevant physico-chemical and in vitro transport properties of the bioactive component. A representative set of seven cationic peptides-including cell-penetrating peptides as well as antimicrobial peptides and synthetic derivatives-was selected for our comparative study. Membrane affinity of the peptides and their 5(6)-carboxyfluorescein (Cf) derivatives was determined quantitatively and compared applying Langmuir monolayer of zwitterionic (DPPC) and negatively charged (DPPC + DPPG) lipids as cell membrane models. The interaction with neutral lipid layer is mainly governed by the overall hydrophobicity of the molecule which is remarkably increased by Cf-conjugation for the most hydrophobic Magainin, Melittin and Transportan. A significantly enhanced membrane affinity was detected in negatively charged lipid model monolayer for all of the peptides since the combination of electrostatic and hydrophobic interaction is active in that case. The Cf-conjugation improved the penetration ability of Penetratin and Dhvar4 suggesting that both the highly charged character (Z/n) and the increased hydrophobicity by Cf-conjugation present important contribution to membrane interaction. This effect might also responsible for the observed high in vitro internalisation rate of Penetratin and Dhvar4, while according to in vitro studies they did not cause damage of cell membrane. From the experiments with the given seven cationic peptides, it can be concluded that the Cf-conjugation alters the degree of membrane interaction of such peptides which are moderately hydrophobic and highly charged.


Asunto(s)
Membrana Celular , Péptidos de Penetración Celular , Fluoresceínas , Ensayo de Materiales , Membranas Artificiales , Coloración y Etiquetado , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Fluoresceínas/química , Fluoresceínas/farmacología , Humanos
18.
Bioconjug Chem ; 29(5): 1495-1499, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29669198

RESUMEN

Nanoparticles consisting of biodegradable poly(d,l-lactic- co-glycolic acid) (PLGA) are promising carriers for drug molecules to improve the treatment of tuberculosis. Surface modifiers, such as Pluronic F127, are essential for biocompatibility and for the protection against particle aggregation. This study demonstrates a successful approach to conjugate Pluronic F127 coated PLGA nanoparticles with Tuftsin, which has been reported as a macrophage-targeting peptide. Transformation of Pluronic F127 hydroxyl groups-which have limited reactivity-into aldehyde groups provide a convenient way to bind aminooxy-peptide derivatives in a one-step reaction. We have also investigated that this change has no effect on the physicochemical properties of the nanoparticles. Our data showed that coating nanoparticles with Pluronic-Tuftsin conjugate markedly increased the internalization rate and the intracellular activity of the encapsulated drug candidate against Mycobacterium tuberculosis. By employing this approach, a large variety of peptide targeted PLGA nanoparticles can be designed for drug delivery.


Asunto(s)
Antituberculosos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Poloxámero/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/análogos & derivados , Tuftsina/química , Antituberculosos/farmacología , Línea Celular , Portadores de Fármacos/síntesis química , Humanos , Monocitos/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Poloxámero/síntesis química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/síntesis química , Propiedades de Superficie , Tuberculosis/tratamiento farmacológico , Tuftsina/síntesis química
19.
Chirality ; 30(2): 195-205, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29110341

RESUMEN

The interaction of protoporphyrin compounds of human origin with the major bee venom component melittin (26 a.a., Z +6) and its hybrid derivative (CM15, 15 a.a., Z +6) were studied by a combination of various spectroscopic methods. Throughout a two-state, concentration-dependent process, hemin and its metabolites (biliverdin, bilirubin, bilirubin ditaurate) increase the parallel ß-sheet content of the natively unfolded melittin, suggesting the oligomerization of the peptide chains. In contrast, α-helix promoting effect was observed with the also disordered but more cationic CM15. According to fluorescence quenching experiments, the sole Trp residue of melittin is the key player during the binding, in the vicinity of which the first pigment molecule is accommodated presumably making indole-porphyrin π-π stacking interaction. As circular dichroism titration data suggest, cooperative association of additional ligands subsequently occurs, resulting in multimeric complexes with an apparent dissociation constant ranged from 20 to 65 µM. Spectroscopic measurements conducted with the bilirubin catabolite urobilin and stercobilin refer to the requirement of intact dipyrrinone moieties for inducing secondary structure transformations. The binding topography of porphyrin rings on a model parallel ß-sheet motif was evaluated by absorption spectroscopy and computational modeling showing a slipped-cofacial binding mode responsible for the red shift and hypochromism of the Soret band. Our results may aid to recognize porphyrin-responsive binding motifs of biologically relevant, intrinsically disordered peptides and proteins, where transient conformations play a vital role in their functions.


Asunto(s)
Antiinfecciosos/química , Pigmentos Biliares/farmacología , Hemina/farmacología , Proteínas Intrínsecamente Desordenadas/química , Péptidos Catiónicos Antimicrobianos/química , Meliteno/química , Estructura Secundaria de Proteína/efectos de los fármacos
20.
Amino Acids ; 49(6): 1053-1067, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28314993

RESUMEN

Cationic peptides proved fundamental importance as pharmaceutical agents and/or drug carrier moieties functioning in cellular processes. The comparison of the in vitro activity of these peptides is an experimental challenge and a combination of different methods, such as cytotoxicity, internalisation rate, haemolytic and antibacterial effect, is necessary. At the same time, several issues need to be addressed as the assay conditions have a great influence on the measured biological effects and the experimental setup needs to be optimised. Therefore, critical comparison of results from different assays using representative examples of cell penetrating and antimicrobial peptides was performed and optimal test conditions were suggested. Our main goal was to identify carrier peptides for drug delivery systems of antimicrobial drug candidates. Based on the results of internalisation, haemolytic, cytotoxic and antibacterial activity assays, a classification of cationic peptides is advocated. We found eight promising carrier peptides with good penetration ability of which Penetratin, Tat, Buforin and Dhvar4 peptides showed low adverse haemolytic effect. Penetratin, Transportan, Dhvar4 and the hybrid CM15 peptide had the most potent antibacterial activity on Streptococcus pneumoniae (MIC lower than 1.2 µM) and Transportan was effective against Mycobacterium tuberculosis as well. The most selective peptide was the Penetratin, where the effective antimicrobial concentration on pneumococcus was more than 250 times lower than the HC50 value. Therefore, these peptides and their analogues will be further investigated as drug delivery systems for antimicrobial agents.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Membrana Celular/metabolismo , Hemólisis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Línea Celular Tumoral , Membrana Celular/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...