Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Tree Physiol ; 43(9): 1514-1532, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209136

RESUMEN

Tropical montane cloud forests (TMCFs) are expected to experience more frequent and prolonged droughts over the coming century, yet understanding of TCMF tree responses to moisture stress remains weak compared with the lowland tropics. We simulated a severe drought in a throughfall reduction experiment (TFR) for 2 years in a Peruvian TCMF and evaluated the physiological responses of several dominant species (Clusia flaviflora Engl., Weinmannia bangii (Rusby) Engl., Weinmannia crassifolia Ruiz & Pav. and Prunus integrifolia (C. Presl) Walp). Measurements were taken of (i) sap flow; (ii) diurnal cycles of stem shrinkage, stem moisture variation and water-use; and (iii) intrinsic water-use efficiency (iWUE) estimated from foliar δ13C. In W. bangii, we used dendrometers and volumetric water content (VWC) sensors to quantify daily cycles of stem water storage. In 2 years of sap flow (Js) data, we found a threshold response of water use to vapor pressure deficit vapor pressure deficit (VPD) > 1.07 kPa independent of treatment, though control trees used more soil water than the treatment trees. The daily decline in water use in the TFR trees was associated with a strong reduction in both morning and afternoon Js rates at a given VPD. Soil moisture also affected the hysteresis strength between Js and VPD. Reduced hysteresis under moisture stress implies that TMCFs are strongly dependent on shallow soil water. Additionally, we suggest that hysteresis can serve as a sensitive indicator of environmental constraints on plant function. Finally, 6 months into the experiment, the TFR treatment significantly increased iWUE in all study species. Our results highlight the conservative behavior of TMCF tree water use under severe soil drought and elucidate physiological thresholds related to VPD and its interaction with soil moisture. The observed strongly isohydric response likely incurs a cost to the carbon balance of the tree and reduces overall ecosystem carbon uptake.


Asunto(s)
Ecosistema , Árboles , Árboles/fisiología , Sequías , Agua/fisiología , Bosques , Carbono , Suelo
2.
Plants (Basel) ; 12(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050067

RESUMEN

Tropical cloud forests are characterized by abundant and biodiverse mosses which grow epiphytically as well as on the ground. Nitrogen (N)-fixing cyanobacteria live in association with most mosses, and contribute greatly to the N pool via biological nitrogen fixation (BNF). However, the availability of nutrients, especially N and phosphorus (P), can influence BNF rates drastically. To evaluate the effects of increased N and P availability on BNF in mosses, we conducted a laboratory experiment where we added N and P, in isolation and combined, to three mosses (Campylopus sp., Dicranum sp. and Thuidium peruvianum) collected from a cloud forest in Peru. Our results show that N addition almost completely inhibited BNF within a day, whereas P addition caused variable results across moss species. Low N2 fixation rates were observed in Campylopus sp. across the experiment. BNF in Dicranum sp. was decreased by all nutrients, while P additions seemed to promote BNF in T. peruvianum. Hence, each of the three mosses contributes distinctively to the ecosystem N pool depending on nutrient availability. Moreover, increased N input will likely significantly decrease BNF associated with mosses also in tropical cloud forests, thereby limiting N input to these ecosystems via the moss-cyanobacteria pathway.

3.
Proc Biol Sci ; 286(1895): 20182284, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30963945

RESUMEN

Liverworts and mosses are a major component of the epiphyte flora of tropical montane forest ecosystems. Canopy access was used to analyse the distribution and vertical stratification of bryophyte epiphytes within tree crowns at nine forest sites across a 3400 m elevational gradient in Peru, from the Amazonian basin to the high Andes. The stable isotope compositions of bryophyte organic material (13C/12C and 18O/16O) are associated with surface water diffusive limitations and, along with C/N content, provide a generic index for the extent of cloud immersion. From lowland to cloud forest δ13C increased from -33‰ to -27‰, while δ18O increased from 16.3‰ to 18.0‰. Epiphytic bryophyte and associated canopy soil biomass in the cloud immersion zone was estimated at up to 45 t dry mass ha-1, and overall water holding capacity was equivalent to a 20 mm precipitation event. The study emphasizes the importance of diverse bryophyte communities in sequestering carbon in threatened habitats, with stable isotope analysis allowing future elevational shifts in the cloud base associated with changes in climate to be tracked.


Asunto(s)
Biodiversidad , Biomasa , Briófitas/química , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Altitud , Bosques , Perú
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...