Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 4: 1676, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23575680

RESUMEN

During homologous recombination, eukaryotic RecA homologue Rad51 assembles into a nucleoprotein filament on single-stranded DNA to catalyse homologous pairing and DNA-strand exchange with a homologous template. Rad51 nucleoprotein filaments are highly dynamic and regulated via the coordinated actions of various accessory proteins including Rad51 mediators. Here, we identify a new Rad51 mediator complex. The PCSS complex, comprising budding yeast Psy3, Csm2, Shu1 and Shu2 proteins, binds to recombination sites and is required for Rad51 assembly and function during meiosis. Within the hetero-tetramer, Psy3-Csm2 constitutes a core sub-complex with DNA-binding activity. In vitro, purified Psy3-Csm2 stabilizes the Rad51-single-stranded DNA complex independently of nucleotide cofactor. The mechanism of Rad51 stabilization is inferred by our high-resolution crystal structure, which reveals Psy3-Csm2 to be a structural mimic of the Rad51-dimer, a fundamental unit of the Rad51-filament. Together, these results reveal a novel molecular mechanism for this class of Rad51-mediators, which includes the human Rad51 paralogues.


Asunto(s)
Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Cartilla de ADN , ADN de Cadena Simple/metabolismo , Meiosis , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 285(24): 18684-92, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20375021

RESUMEN

Aminomethyltransferase, a component of the glycine cleavage system termed T-protein, reversibly catalyzes the degradation of the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein, resulting in the production of ammonia, 5,10-methylenetetrahydrofolate, and dihydrolipoate-bearing H-protein in the presence of tetrahydrofolate. Several mutations in the human T-protein gene are known to cause nonketotic hyperglycinemia. Here, we report the crystal structure of Escherichia coli T-protein in complex with dihydrolipoate-bearing H-protein and 5-methyltetrahydrofolate, a complex mimicking the ternary complex in the reverse reaction. The structure of the complex shows a highly interacting intermolecular interface limited to a small area and the protein-bound dihydrolipoyllysine arm inserted into the active site cavity of the T-protein. Invariant Arg(292) of the T-protein is essential for complex assembly. The structure also provides novel insights in understanding the disease-causing mutations, in addition to the disease-related impairment in the cofactor-enzyme interactions reported previously. Furthermore, structural and mutational analyses suggest that the reversible transfer of the methylene group between the lipoate and tetrahydrofolate should proceed through the electron relay-assisted iminium intermediate formation.


Asunto(s)
Aminometiltransferasa/química , Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Mutación , Arginina/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Análisis Mutacional de ADN , Dimerización , Escherichia coli/metabolismo , Ácido Fólico/química , Glicina/química , Hiperglucemia/metabolismo , Iminas/química , Modelos Moleculares
3.
J Biol Chem ; 285(13): 9971-9980, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20089862

RESUMEN

Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645-33651). Here, we report two new LplA structures, LplA.lipoyl-5'-AMP and LplA.octyl-5'-AMP.apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5'-AMP reaction intermediate and rotation of the C-terminal domain by about 180 degrees . These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys(133) residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.


Asunto(s)
Escherichia coli/enzimología , Péptido Sintasas/química , Adenosina Monofosfato/química , Animales , Catálisis , Bovinos , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Estructura Terciaria de Proteína , Electricidad Estática , Ácido Tióctico/química , Vitaminas/química
4.
J Mol Biol ; 371(1): 222-34, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17570395

RESUMEN

Lipoic acid is an essential cofactor of the alpha-ketoacid dehydrogenase complexes and the glycine cleavage system. It is covalently attached to a specific lysine residue of the subunit of the complexes. The bovine lipoyltransferase (bLT) catalyzes the lipoic acid attachment reaction using lipoyl-AMP as a substrate, forming a lipoylated protein and AMP. To gain insights into the reaction mechanism at the atomic level, we have determined the crystal structure of bLT at 2.10 A resolution. Unexpectedly, the purified recombinant bLT contains endogenous lipoyl-AMP. The structure of bLT consists of N-terminal and C-terminal domains, and lipoyl-AMP is bound to the active site in the N-terminal domain, adopting a U-shaped conformation. The lipoyl moiety is buried in the hydrophobic pocket, forming van der Waals interactions, and the AMP moiety forms numerous hydrogen bonds with bLT in another tunnel-like cavity. These interactions work together to expose the C10 atom of lipoyl-AMP to the surface of the bLT molecule. The carbonyl oxygen atom of lipoyl-AMP interacts with the invariant Lys135. The interaction might stimulate the positive charge of the C10 atom of lipoyl-AMP, and consequently facilitate the nucleophilic attack by the lysine residue of the lipoate-acceptor protein, accompanying the bond cleavage between the carbonyl group and the phosphate group. We discuss the structural differences between bLT and the lipoate-protein ligase A from Escherichia coli and Thermoplasma acidophilum. We further demonstrate that bLT in mitochondria also contains endogenous lipoylmononucleotide, being ready for the lipoylation of apoproteins.


Asunto(s)
Aciltransferasas/química , Adenosina Monofosfato/química , Estructura Terciaria de Proteína , Aciltransferasas/genética , Aciltransferasas/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Escherichia coli/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Thermoplasma/enzimología
5.
Proc Natl Acad Sci U S A ; 103(18): 7036-41, 2006 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-16636290

RESUMEN

Invasive potentials of carcinomas greatly contribute to their metastasis, which is a major threat in most cancers. We have recently shown that Arf6 plays a pivotal role in breast cancer invasive activities and identified AMAP1 as an effector of GTP-Arf6 in invasion. Expression of AMAP1 correlates well with invasive phenotypes of primary tumors of the human breast. We also have shown that AMAP1 functions by forming a trimeric protein complex with cortactin and paxillin. In this complex, AMAP1 binds to the src homology 3 (SH3) domain of cortactin via its proline-rich peptide, SKKRPPPPPPGHKRT. SH3 domains are known to bind generally to the proline-rich ligands with a one-to-one stoichiometry. We found that AMAP1/cortactin binding is very atypical in its stoichiometry and interface structure, in which one AMAP1 proline-rich peptide binds to two cortactin SH3 domains simultaneously. We made a cell-permeable peptide derived from the AMAP1 peptide, and we show that this peptide specifically blocks AMAP1/cortactin binding, but not other canonical SH3/proline bindings, and effectively inhibits breast cancer invasion and metastasis. Moreover, this peptide was found to block invasion of other types of cancers, such as glioblastomas and lung carcinomas. We also found that a small-molecule compound, UCS15A, which was previously judged as a weak inhibitor against canonical SH3/proline bindings, effectively inhibits AMAP1/cortactin binding and breast cancer invasion and metastasis. Together with fine structural analysis, we propose that the AMAP1/cortactin complex, which is not detected in normal mammary epithelial cells, is an excellent drug target for cancer therapeutics.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama , Cortactina/metabolismo , Invasividad Neoplásica/prevención & control , Metástasis de la Neoplasia/prevención & control , Prolina/metabolismo , Dominios Homologos src , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Benzaldehídos/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cortactina/química , Cortactina/genética , Femenino , Productos del Gen tat/genética , Productos del Gen tat/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Complejos Multiproteicos , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
6.
J Mol Biol ; 351(5): 1146-59, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16051266

RESUMEN

T-protein, a component of the glycine cleavage system, catalyzes the formation of ammonia and 5,10-methylenetetrahydrofolate from the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein. Several mutations in the human T-protein gene cause non-ketotic hyperglycinemia. To gain insights into the effect of disease-causing mutations and the catalytic mechanism at the molecular level, crystal structures of human T-protein in free form and that bound to 5-methyltetrahydrofolate (5-CH3-H4folate) have been determined at 2.0 A and 2.6 A resolution, respectively. The overall structure consists of three domains arranged in a cloverleaf-like structure with the central cavity, where 5-CH3-H4folate is bound in a kinked shape with the pteridine group deeply buried into the hydrophobic pocket and the glutamyl group pointed to the C-terminal side surface. Most of the disease-related residues cluster around the cavity, forming extensive hydrogen bonding networks. These hydrogen bonding networks are employed in holding not only the folate-binding space but also the positions and the orientations of alpha-helix G and the following loop in the middle region, which seems to play a pivotal role in the T-protein catalysis. Structural and mutational analyses demonstrated that Arg292 interacts through water molecules with the folate polyglutamate tail, and that the invariant Asp101, located close to the N10 group of 5-CH3-H4folate, might play a key role in the initiation of the catalysis by increasing the nucleophilic character of the N10 atom of the folate substrate for the nucleophilic attack on the aminomethyl lipoate intermediate. A clever mechanism of recruiting the aminomethyl lipoate arm to the reaction site seems to function as a way of avoiding the release of toxic formaldehyde.


Asunto(s)
Cristalografía por Rayos X/métodos , Glicina/química , Transferasas de Hidroximetilo y Formilo/química , Hiperglicinemia no Cetósica/metabolismo , Secuencia de Aminoácidos , Aminometiltransferasa , Animales , Arginina/química , Asparagina/química , Sitios de Unión , Dominio Catalítico , Análisis por Conglomerados , Análisis Mutacional de ADN , Formaldehído/química , Humanos , Enlace de Hidrógeno , Cinética , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...