Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 978, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042777

RESUMEN

Pseudomonas syringae employs a battery of type three secretion effectors to subvert plant immune responses. In turn, plants have developed receptors that recognize some of the bacterial effectors. Two strain-specific HopQ1 effector variants (for Hrp outer protein Q) from the pathovars phaseolicola 1448A (Pph) and tomato DC3000 (Pto) showed considerable differences in their ability to evoke disease symptoms in Nicotiana benthamiana. Surprisingly, the variants differ by only six amino acids located mostly in the N-terminal disordered region of HopQ1. We found that the presence of serine 87 and leucine 91 renders PtoHopQ1 susceptible to N-terminal processing by plant proteases. Substitutions at these two positions did not strongly affect PtoHopQ1 virulence properties in a susceptible host but they reduced bacterial growth and accelerated onset of cell death in a resistant host, suggesting that N-terminal mutations rendered PtoHopQ1 susceptible to processing in planta and, thus, represent a mechanism of recognition avoidance. Furthermore, we found that co-expression of HopR1, another effector encoded within the same gene cluster masks HopQ1 recognition in a strain-dependent manner. Together, these data suggest that HopQ1 is under high host-pathogen co-evolutionary selection pressure and P. syringae may have evolved differential effector processing or masking as two independent strategies to evade HopQ1 recognition, thus revealing another level of complexity in plant - microbe interactions.

2.
Plant Cell ; 27(4): 1332-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25888589

RESUMEN

The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize.


Asunto(s)
Proteínas de Plantas/metabolismo , Tumores de Planta , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología
3.
Plant Signal Behav ; 9(4)2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24731991

RESUMEN

Plant nucleotide-binding (NB) and leucine-rich repeat (LRR) receptors mediate effector-triggered immunity. Two major classes of NB-LRR proteins are involved in this process, namely, toll-interleukin receptor (TIR)-NB-LRR and coiled coil (CC)-NB-LRR proteins. Recent reports show that some of the TIR-NB-LRRs and CC-NB-LRRs localize to the cytoplasm and nucleus. Equilibrium between these pools is required for full resistance, suggesting tight regulation of nucleocytoplasmic receptor shuttling. We recently showed that SGT1, a protein that controls NB-LRR receptor stability and activity, facilitates nuclear import of N protein, which is a TIR-NB-LRR receptor. In this addendum, we show that the subcellular localization of Rx, a CC-NB-LRR protein, reflects the positions of SGT1 ectopic variants in the cell. This suggests that SGT1 might have a general role in maintaining the nucleocytoplasmic balance of NB-LRR receptors. We discuss these results in light of differences in the N and Rx systems of effector-triggered immunity.

4.
New Phytol ; 200(1): 158-171, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23731343

RESUMEN

SGT1 (Suppressor of G2 allele of SKP1) is required to maintain plant disease Resistance (R) proteins with Nucleotide-Binding (NB) and Leucine-Rich Repeat (LRR) domains in an inactive but signaling-competent state. SGT1 is an integral component of a multi-protein network that includes RACK1, Rac1, RAR1, Rboh, HSP90 and HSP70, and in rice the Mitogen-Activated Protein Kinase (MAPK), OsMAPK6. Tobacco (Nicotiana tabacum) N protein, which belongs to the Toll-Interleukin Receptor (TIR)-NB-LRR class of R proteins, confers resistance to Tobacco Mosaic Virus (TMV). Following transient expression in planta, we analyzed the functional relationship between SGT1, SIPK - a tobacco MAPK6 ortholog - and N, using mass spectrometry, confocal microscopy and pathogen assays. Here, we show that tobacco SGT1 undergoes specific phosphorylation in a canonical MAPK target-motif by SIPK. Mutation of this motif to mimic SIPK phosphorylation leads to an increased proportion of cells displaying SGT1 nuclear accumulation and impairs N-mediated resistance to TMV, as does phospho-null substitution at the same residue. Forced nuclear localization of SGT1 causes N to be confined to nuclei. Our data suggest that one mode of regulating nucleocytoplasmic partitioning of R proteins is by maintaining appropriate levels of SGT1 phosphorylation catalyzed by plant MAPK.


Asunto(s)
Núcleo Celular , Resistencia a la Enfermedad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nicotiana/fisiología , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Virus del Mosaico del Tabaco , Fosforilación , Transducción de Señal , Nicotiana/metabolismo , Nicotiana/virología
5.
J Biol Chem ; 278(3): 1603-11, 2003 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-12426313

RESUMEN

The yeast mitochondrial degradosome (mtEXO) is an NTP-dependent exoribonuclease involved in mitochondrial RNA metabolism. Previous purifications suggested that it was composed of three subunits. Our results suggest that the degradosome is composed of only two large subunits: an RNase and a RNA helicase encoded by nuclear genes DSS1 and SUV3, respectively, and that it co-purifies with mitochondrial ribosomes. We have found that the purified degradosome has RNA helicase activity that precedes and is essential for exoribonuclease activity of this complex. The degradosome RNase activity is necessary for mitochondrial biogenesis but in vitro the degradosome without RNase activity is still able to unwind RNA. In yeast strains lacking degradosome components there is a strong accumulation of mitochondrial mRNA and rRNA precursors not processed at 3'- and 5'-ends. The observed accumulation of precursors is probably the result of lack of degradation rather than direct inhibition of processing. We suggest that the degradosome is a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNAs.


Asunto(s)
Mitocondrias/enzimología , ARN Helicasas/metabolismo , ARN de Hongos/metabolismo , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Hidrólisis , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...