Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(10): e109167, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25295878

RESUMEN

Future climate change is predicted to alter the physical characteristics of oceans and estuaries, including pH, temperature, oxygen, and salinity. Investigating how species react to the influence of such multiple stressors is crucial for assessing how future environmental change will alter marine ecosystems. The timing of multiple stressors can also be important, since in some cases stressors arise simultaneously, while in others they occur in rapid succession. In this study, we investigated the effects of elevated pCO2 on oxygen consumption by larvae of the intertidal porcelain crab Petrolisthes cinctipes when exposed to subsequent salinity stress. Such an exposure mimics how larvae under future acidified conditions will likely experience sudden runoff events such as those that occur seasonally along portions of the west coast of the U.S. and in other temperate systems, or how larvae encounter hypersaline waters when crossing density gradients via directed swimming. We raised larvae in the laboratory under ambient and predicted future pCO2 levels (385 and 1000 µatm) for 10 days, and then moved them to seawater at ambient pCO2 but with decreased, ambient, or elevated salinity, to monitor their respiration. While larvae raised under elevated pCO2 or exposed to stressful salinity conditions alone did not exhibit higher respiration rates than larvae held in ambient conditions, larvae exposed to elevated pCO2 followed by stressful salinity conditions consumed more oxygen. These results show that even when multiple stressors act sequentially rather than simultaneously, they can retain their capacity to detrimentally affect organisms.


Asunto(s)
Crustáceos/metabolismo , Larva/fisiología , Animales , Dióxido de Carbono , Cambio Climático , Ecosistema , Oxígeno , Salinidad
2.
PLoS One ; 9(7): e100353, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24984016

RESUMEN

Ocean acidification (OA) is occurring across a backdrop of concurrent environmental changes that may in turn influence species' responses to OA. Temperature affects many fundamental biological processes and governs key reactions in the seawater carbonate system. It therefore has the potential to offset or exacerbate the effects of OA. While initial studies have examined the combined impacts of warming and OA for a narrow range of climate change scenarios, our mechanistic understanding of the interactive effects of temperature and OA remains limited. Here, we use the blue mussel, Mytilus galloprovincialis, as a model species to test how OA affects the growth of a calcifying invertebrate across a wide range of temperatures encompassing their thermal optimum. Mussels were exposed in the laboratory to a factorial combination of low and high pCO2 (400 and 1200 µatm CO2) and temperatures (12, 14, 16, 18, 20, and 24°C) for one month. Results indicate that the effects of OA on shell growth are highly dependent on temperature. Although high CO2 significantly reduced mussel growth at 14°C, this effect gradually lessened with successive warming to 20°C, illustrating how moderate warming can mediate the effects of OA through temperature's effects on both physiology and seawater geochemistry. Furthermore, the mussels grew thicker shells in warmer conditions independent of CO2 treatment. Together, these results highlight the importance of considering the physiological and geochemical interactions between temperature and carbonate chemistry when interpreting species' vulnerability to OA.


Asunto(s)
Cambio Climático , Mytilus/fisiología , Agua de Mar/química , Temperatura , Animales , Dióxido de Carbono/análisis , Conducta Alimentaria , Océanos y Mares , Dinámica Poblacional
3.
Proc Natl Acad Sci U S A ; 110(17): 6937-42, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569232

RESUMEN

Rising atmospheric carbon dioxide (CO2) conditions are driving unprecedented changes in seawater chemistry, resulting in reduced pH and carbonate ion concentrations in the Earth's oceans. This ocean acidification has negative but variable impacts on individual performance in many marine species. However, little is known about the adaptive capacity of species to respond to an acidified ocean, and, as a result, predictions regarding future ecosystem responses remain incomplete. Here we demonstrate that ocean acidification generates striking patterns of genome-wide selection in purple sea urchins (Strongylocentrotus purpuratus) cultured under different CO2 levels. We examined genetic change at 19,493 loci in larvae from seven adult populations cultured under realistic future CO2 levels. Although larval development and morphology showed little response to elevated CO2, we found substantial allelic change in 40 functional classes of proteins involving hundreds of loci. Pronounced genetic changes, including excess amino acid replacements, were detected in all populations and occurred in genes for biomineralization, lipid metabolism, and ion homeostasis--gene classes that build skeletons and interact in pH regulation. Such genetic change represents a neglected and important impact of ocean acidification that may influence populations that show few outward signs of response to acidification. Our results demonstrate the capacity for rapid evolution in the face of ocean acidification and show that standing genetic variation could be a reservoir of resilience to climate change in this coastal upwelling ecosystem. However, effective response to strong natural selection demands large population sizes and may be limited in species impacted by other environmental stressors.


Asunto(s)
Adaptación Biológica/genética , Cambio Climático , Evolución Molecular , Variación Genética , Agua de Mar/química , Strongylocentrotus purpuratus/genética , Animales , Dióxido de Carbono/análisis , Concentración de Iones de Hidrógeno , Larva/crecimiento & desarrollo , Larva/metabolismo , Metagenómica , Strongylocentrotus purpuratus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...