Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 1): 133366, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914385

RESUMEN

Pomegranate peel extract (PPE) hydrogel films filled with citric acid (CA) and ß-cyclodextrin-carboxymethyl tapioca starch (CMS) were designed mainly to prevent wound infections and speed up the healing process. FTIR and NMR studies corroborated the carboxymethylation of neat tapioca starch (NS). CMS exhibited superior swelling behavior than NS. The amount of CA and ß-CD controlled the physicochemical parameters of developed PPE/CA/ß-CD/CMS films. Optimized film (OF) exhibited acceptable swellability, wound fluid absorptivity, water vapor transmission rate, water contact angle, and mechanical properties. Biodegradable, biocompatible, and antibacterial films exhibited pH dependence in the release of ellagic acid for up to 24 h. In mice model, PPE/CA/ß-CD/CMS hydrogel film treatment showed promising wound healing effects, including increased collagen deposition, reduced inflammation, activation of the Wingless-related integration site (wnt) pathway leading to cell division, proliferation, and migration to the wound site. The expression of the WNT3A gene did not show any significant differences among all the studied groups. Developed PPE-loaded CA/ß-CD/CMS film promoted wound healing by epithelialization, granulation tissue thickness, collagen deposition, and angiogenesis, hence could be recommended as a biodegradable and antibacterial hydrogel platform to improve the cell proliferation during the healing of diabetic wounds.

2.
J Fluoresc ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733111

RESUMEN

The present work focuses on the synthesis of novel heterocycles 2-(aryloxy)-3-(4,5-diaryl-1H-imidazol-2-yl)quinolines (6k-v) by an effective condensation reaction. These molecules exhibited fluorescent properties and hence for the proper understanding of their optical behavior and quantum yields, solvatochromic studies have been carried out. Further, frontier molecular orbitals, molecular electrostatic potential (MEP), and geometrical structure optimization have been investigated using the B3LYP/6-311G ++ (d, p) method. The energy gap between the HOMO, LUMO of the optical and energy band gap is determined by DFT and UV-visible spectra for TD-DFT studies are done. The screening of these compounds for in vitro COX-1 and COX-2 inhibition and DPPH free radical scavenging ability assays produced promising results. The binding interactions of these molecules against the COX-2 enzyme (PDB: 5IKR) were validated by docking studies.

3.
Front Pharmacol ; 14: 1206438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456762

RESUMEN

Poor circulation, unresolved inflammation, neuropathy, and infection make wound care difficult. Manilkara zapota (M. zapota) antibacterial and antioxidant properties may help speed up the healing process. The present investigation aimed to evaluate the wound healing activity of M. zapota bark ethanolic extract (MZE) by employing in-vitro migration scratch assay and in-vivo animal models. Wistar albino rats were used for the in-vivo wound healing models. No treatment was given to Group I; Group II received povidone-iodine (5% W/W); Group III received MZE (5% W/W); and Group IV received MZE (10% W/W). Linear incision models and excision wound models were used to induce injury. The ointments were applied immediately to the wounds after causing the injury. The percentage of wound contraction, the length of the epithelization period, and the wound's tensile strength were all calculated. The scratch assay assessed the test drug's potential for wound healing in-vitro. H2O2 and DPPH scavenging assays were used to measure antioxidant activity. A p < 0.05 was used to define statistical significance. On days 4, 8, 12, 16, and 20, the wound contraction potential of animals treated with MZE ointment was significantly higher (p < 0.001) than that of the control group. On day 20, the proportion of wound contraction in MZE-treated animals was 99.88%, compared to 83.86% in untreated animals. The test group had a significantly (p < 0.01) faster time to full epithelization than the control group. In the incision model, the control group had considerably lower mechanical strength (p < 0.001) than animals treated with MZE. In addition, MZE caused a significant increase (p < 0.001) in total protein and hydroxyproline levels. In the scratch experiment, test drug-treated cells showed a higher rate of cell migration than untreated cells. Furthermore, animals treated with MZE showed increased levels of epithelial tissue, collagen proliferation, and keratinization. To summarize, the current study found that M. zapota improved wound healing activity both in vitro and in vivo, as evidenced by the study results. M. zapota extract has significant wound-healing potential and could be a viable source of wound-healing nutraceuticals.

4.
Int J Biol Macromol ; 246: 125578, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379943

RESUMEN

Here we present the simple green synthesis of chitosan­silver nanocomposite (CS-Ag NC) by employing kiwi fruit juice as reducing agent. The structure, morphology, and composition of CS-Ag NC were determined using characterization techniques such as XRD, SEM-EDX, UV-visible, FT-IR, particle size, and zeta potential. The prepared CS-Ag nanocomposite was effectively used as catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 as reductant, in aqueous medium at room temperature. The toxicity of CS-Ag NC was assessed on Normal (L929) cell line, Lung cancer (A549) cell line and Oral cancer (KB-3-1) cell line and their respective IC50values observed were 83.52 µg/mL, 66.74 µg/mL and 75.11 µg/mL. The CS-Ag NC displayed significant cytotoxic activity and the cell viability percentage for normal, lung and oral cancer cell lines were found to be 42.87 ± 0.0060, 31.28 ± 0.0045 and 35.90 ± 0.0065 respectively. Stronger cell migration was exemplified by CS-Ag NC and the percentage of wound closure (97.92%) was substantially identical to that of the standard drug ascorbic acid (99.27%). Further CS-Ag nanocomposite was subjected for in vitro antioxidant activity.


Asunto(s)
Quitosano , Nanopartículas del Metal , Neoplasias de la Boca , Nanocompuestos , Humanos , Antioxidantes/farmacología , Quitosano/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Cicatrización de Heridas , Nanocompuestos/química , Nanopartículas del Metal/química , Antibacterianos/química
5.
Molecules ; 27(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36234841

RESUMEN

Silver nanoparticles (AgNPs) have recently gained interest in the medical field because of their biological features. The present study aimed at screening Rhizophora apiculata secondary metabolites, quantifying their flavonoids and total phenolics content, green synthesis and characterization of R. apiculata silver nanoparticles. In addition, an assessment of in vitro cytotoxic, antioxidant, anti-inflammatory and wound healing activity of R. apiculata and its synthesized AgNPs was carried out. The powdered plant material (leaves) was subjected to Soxhlet extraction to obtain R. apiculata aqueous extract. The R. apiculata extract was used as a reducing agent in synthesizing AgNPs from silver nitrate. The synthesized AgNPs were characterized by UV-Vis, SEM-EDX, XRD, FTIR, particle size analyzer and zeta potential. Further aqueous leaf extract of R. apiculata and AgNPs was subjected for in vitro antioxidant, anti-inflammatory, wound healing and cytotoxic activity against A375 (Skin cancer), A549 (Lung cancer), and KB-3-1 (Oral cancer) cell lines. All experiments were repeated three times (n = 3), and the results were given as the mean ± SEM. The flavonoids and total phenolics content in R. apiculata extract were 44.18 ± 0.086 mg/g of quercetin and 53.24 ± 0.028 mg/g of gallic acid, respectively. SEM analysis revealed R. apiculata AgNPs with diameters ranging from 35 to 100 nm. XRD confirmed that the synthesized silver nanoparticles were crystalline in nature. The cytotoxicity cell viability assay revealed that the AgNPs were less toxic (IC50 105.5 µg/mL) compared to the R. apiculata extract (IC50 47.47 µg/mL) against the non-cancerous fibroblast L929 cell line. Antioxidant, anti-inflammatory, and cytotoxicity tests revealed that AgNPs had significantly more activity than the plant extract. The AgNPs inhibited protein denaturation by a mean percentage of 71.65%, which was equivalent to the standard anti-inflammatory medication diclofenac (94.24%). The AgNPs showed considerable cytotoxic effect, and the percentage of cell viability against skin cancer, lung cancer, and oral cancer cell lines was 31.84%, 56.09% and 22.59%, respectively. R. apiculata AgNPs demonstrated stronger cell migration and percentage of wound closure (82.79%) compared to the plant extract (75.23%). The overall results revealed that R. apiculata AgNPs exhibited potential antioxidant, anti-inflammatory, wound healing, and cytotoxic properties. In future, R. apiculata should be further explored to unmask its therapeutic potential and the mechanistic pathways of AgNPs should be studied in detail in in vivo animal models.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias de la Boca , Rhizophoraceae , Animales , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Diclofenaco/farmacología , Ácido Gálico/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Quercetina/farmacología , Sustancias Reductoras/farmacología , Plata/farmacología , Nitrato de Plata/farmacología , Cicatrización de Heridas
6.
Arch Pharm (Weinheim) ; 346(9): 645-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23908008

RESUMEN

A novel series of Biginelli 2-3 (a and b) and Biginelli-like compounds 4-7 (a and b) were synthesized from 3-aryl-4-formylsydnone 1 (a and b). Since the crystal structure of hyaluronidase was unavailable, the human hyaluronidase protein structure was used as template and homology modeling was performed, validated by Ramachandran plots and subjected to docking studies along with in vitro anti-inflammatory activity assessment against hyaluronidase. Compounds 2-3 (a and b) exhibited potent enzyme inhibition.


Asunto(s)
Antiinflamatorios/farmacología , Inhibidores Enzimáticos/farmacología , Hialuronoglucosaminidasa/antagonistas & inhibidores , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oxazinas/síntesis química , Oxazinas/química , Oxazinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-Actividad , Sidnonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...