Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Pharm Sci ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679231

RESUMEN

Ribavirin, an antiretroviral agent targeting the hepatitis C virus, causes male reproductive toxicity. This study investigated the mechanism of ribavirin transport at the blood-testis barrier (BTB). In vivo mouse integration plot analysis after intravenous administration revealed that the net influx clearance of [3H]ribavirin in the testis was 3.6-fold greater than that of [14C]D-mannitol, a paracellular transport marker, implying transcellular transport of ribavirin across the BTB. Moreover, [3H]ribavirin uptake by TM4 cells, mouse-derived Sertoli cells, was time- and concentration-dependent, with a Km value of 2.49 mM. S-[(4-nitrophenyl)methyl]-6-thioinosine, an inhibitor of Na+-independent equilibrative nucleoside transporters (ENTs), strongly inhibited the [3H]ribavirin uptake by TM4 cells at 100 µM. Compared to the uptake of [3H]adenosine, a typical endogenous nucleoside, [3H]ribavirin uptake was relatively similar to ENT2 transport. [3H]Ribavirin uptake was also observed in mouse ENT2-expressing Xenopus laevis oocytes, and gene silencing via the transfection of ENT2 small interfering RNA significantly reduced the [3H]ribavirin transport into TM4 cells by 13%. Taken together, these results suggest that ENT2 partially contributes to ribavirin transport at the BTB.

2.
Biol Pharm Bull ; 47(1): 187-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38233148

RESUMEN

Cerebral creatine deficiency syndromes (CCDS) are neurodevelopmental disorders caused by a decrease in creatine levels in the central nervous system (CNS) due to functional mutations in creatine synthetic enzymes or creatine transporter (CRT/SLC6A8). Although SLC6A8 mutations have been reported to be the most frequent cause of CCDS, sufficient treatment for patients with CCDS harboring SLC6A8 mutations has not yet been achieved. This study aimed to elucidate the molecular mechanism of SLC6A8 dysfunction caused by the c. 1699T > C missense mutation, which is thought to induce dysfunction through an unidentified mechanism. A study on SLC6A8-expressing oocytes showed that the c.1699T > C mutation decreased creatine uptake compared to that in wild-type (WT) oocytes. In addition, a kinetics study of creatine uptake revealed that the c.1699T > C mutation reduced the maximum uptake rate but not Michaelis-Menten constant. In contrast, the c.1699T > C mutation did not attenuate SLC6A8 protein levels or alter its cellular localization. Based on the SLC6A8 structure in the AlphaFold protein structure database, it is possible that the c.1699T > C mutation alters the interaction between the S567 and Y143 residues of SLC6A8, leading to decreased creatine transport function. These findings contribute to the understanding of the pathology of CCDS and to the development of strategies for CCDS treatment.


Asunto(s)
Creatina , Mutación Missense , Humanos , Creatina/metabolismo , Mutación , Transporte Biológico , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo
3.
Drug Metab Pharmacokinet ; 51: 100510, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451173

RESUMEN

Lysosomal trapping, a physicochemical process in which lipophilic cationic compounds are sequestered in lysosomes, can affect drug disposition and cytotoxicity. To better understand lysosomal trapping at the outer blood-retinal barrier (BRB), we investigated the distribution of LysoTracker Red (LTR), a probe compound for lysosomal trapping, in conditionally immortalized rat retinal pigment epithelial (RPE-J) cells. LTR uptake by RPE-J cells was dependent on temperature and attenuated by ammonium chloride and protonophore, which decreased the pH gradient between the lysosome and cytoplasm, suggesting lysosomal trapping of LTR in RPE-J cells. The involvement of lysosomal trapping in response to cationic drugs, including neuroprotectants such as desipramine and memantine, was also suggested by an inhibition study of LTR uptake. Chloroquine, which is known to show ocular toxicity, induced cytoplasmic vacuolization in RPE-J cells with a half-maximal effective concentration of 1.35 µM. This value was 59 times lower than the median lethal concentration (= 79.1 µM) of chloroquine, suggesting that vacuolization was not a direct trigger of cell death. These results are helpful for understanding the lysosomal trapping of cationic drugs, which is associated with drug disposition and cytotoxicity in the outer BRB.


Asunto(s)
Barrera Hematorretinal , Lisosomas , Ratas , Animales , Barrera Hematorretinal/metabolismo , Transporte Biológico , Lisosomas/metabolismo , Cloroquina/farmacología , Cloroquina/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240348

RESUMEN

Putrescine is a bioactive polyamine. Its retinal concentration is strictly controlled to maintain a healthy sense of vision. The present study investigated putrescine transport at the blood-retinal barrier (BRB) to gain a better understanding of the mechanisms of putrescine regulation in the retina. Our microdialysis study showed that the elimination rate constant during the terminal phase was significantly greater (1.90-fold) than that of [14C]D-mannitol, which is a bulk flow marker. The difference in the apparent elimination rate constants of [3H]putrescine and [14C]D-mannitol was significantly decreased by unlabeled putrescine and spermine, suggesting active putrescine transport from the retina to the blood across the BRB. Our study using model cell lines of the inner and outer BRB showed that [3H]putrescine transport was time-, temperature-, and concentration-dependent, suggesting the involvement of carrier-mediated processes in putrescine transport at the inner and outer BRB. [3H]Putrescine transport was significantly reduced under Na+-free, Cl--free, and K+-replacement conditions, and attenuated by polyamines or organic cations such as choline, a choline transporter-like protein (CTL) substrate. Rat CTL1 cRNA-injected oocytes exhibited marked alterations in [3H]putrescine uptake, and CTL1 knockdown significantly reduced [3H]putrescine uptake in model cell lines, suggesting the possible participation of CTL1 in putrescine transport at the BRB.


Asunto(s)
Barrera Hematorretinal , Putrescina , Ratas , Animales , Barrera Hematorretinal/metabolismo , Putrescina/metabolismo , Ratas Wistar , Retina/metabolismo , Transporte Biológico , Poliaminas/metabolismo , Manitol/metabolismo
5.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986534

RESUMEN

Blood-to-retina transport across the inner blood-retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives exhibit neuroprotective effects, it is expected that a detailed understanding of this transport system would lead to the efficient retinal delivery of these potential neuroprotective agents for the treatment of retinal diseases. The objective of this study was to characterize the structural features of compounds for the amantadine-sensitive transport system. Inhibition analysis conducted on a rat inner BRB model cell line indicated that the transport system strongly interacts with lipophilic amines, especially primary amines. In addition, lipophilic primary amines that have polar groups, such as hydroxy and carboxy groups, did not inhibit the amantadine transport system. Furthermore, certain types of primary amines with an adamantane skeleton or linear alkyl chain exhibited a competitive inhibition of amantadine uptake, suggesting that these compounds are potential substrates for the amantadine-sensitive drug transport system at the inner BRB. These results are helpful for producing the appropriate drug design to improve the blood-to-retina delivery of neuroprotective drugs.

6.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555148

RESUMEN

At the inner blood-retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered in various tissues. The purpose of this study was to clarify the alterations in P-gp activity at the inner BRB due to lipopolysaccharide (LPS), an inflammatory agent, and the molecular mechanisms of the alterations induced by LPS. Ex vivo P-gp activity was evaluated as luminal accumulation of 7-nitro-2,1,3-benzoxadiazole-cyclosporin A (NBD-CSA), a fluorescent P-gp substrate, in freshly prepared rat retinal capillaries. The luminal NBD-CSA accumulation was significantly decreased in the presence of LPS, indicating that P-gp activity at the inner BRB is reduced by LPS. This LPS-induced attenuation of the luminal NBD-CSA accumulation was abolished by inhibiting toll-like receptor 4 (TLR4), a receptor for LPS. Furthermore, an inhibitor/antagonist of tumor necrosis factor receptor 1, endothelin B receptor, nitric oxide synthase, or protein kinase C (PKC) significantly restored the LPS-induced decrease in the luminal NBD-CSA accumulation. Consequently, it is suggested that the TLR4/PKC pathway is involved in the reduction in P-gp function in the inner BRB by LPS.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Barrera Hematorretinal , Animales , Ratas , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematorretinal/metabolismo , Lipopolisacáridos , Receptor Toll-Like 4/metabolismo
7.
J Control Release ; 351: 8-21, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122894

RESUMEN

Conjugation of angiopep-2 (Ang2) with drugs/compounds is known to increase plasma membrane permeability across endothelial barriers. The inner blood-retinal barrier (BRB) regulates retinal drug distribution and is formed by retinal capillary endothelial cells, supported by Müller cells and retinal pericytes. To elucidate the potential of Ang2 conjugation in promoting retinal drug distribution after peripheral administration across the inner BRB, an in vivo administration study and in vitro transport experiments using newly developed multicellular inner BRB spheroids were performed. After intravenous administration of Ang2-linked green fluorescence protein (GFP-Ang2) in mice, GFP-derived signals were observed in the neural retina. In contrast, GFP-derived signals were not observed after intravenous GFP administration, suggesting the promotion of the retinal distribution of substances by Ang2 conjugation. To overcome the limitations of in vitro studies using cells cultured on dishes, inner BRB spheroids were established using conditionally immortalized rat retinal capillary endothelial cells, Müller cells, and retinal pericytes. Immunocytochemistry of marker molecules suggests that the central part of the spheroids is occupied by Müller cells, and encapsulated by retinal pericytes and capillary endothelial cells. Studies on the expression and functions of tight junctions suggest that tight junctions are formed on the surface of the inner BRB spheroids by retinal capillary endothelial cells. The functional expression of drug transporters, such as P-glycoprotein, was observed in the spheroids, implying that the inner side of the spheroids reflects the retinal side of the inner BRB. In the inner BRB spheroids, energy-dependent accumulation of GFP-Ang2 and Ang2-linked 5(6)-carboxyfluorescein (FAM-Ang2) was observed. Moreover, an endocytic inhibition study revealed that clathrin-dependent endocytosis/transcytosis was involved in the transcellular transport of Ang2-conjugated drugs/compounds across the inner BRB. Consequently, it is suggested that the Ang2 linkage is useful for promoting retinal drug distribution via clathrin-dependent transcytosis at the inner BRB.


Asunto(s)
Barrera Hematorretinal , Células Endoteliales , Animales , Ratas , Ratones , Células Endoteliales/metabolismo , Barrera Hematorretinal/metabolismo , Retina/metabolismo , Clatrina/metabolismo
8.
Int J Pharm ; 625: 122044, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35902057

RESUMEN

3'-Azido-3'-deoxythymidine (AZT), an antiretroviral drug, is often adopted in the therapy for human immunodeficiency virus (HIV) infection, and the characteristics of AZT transport at the blood-testis barrier (BTB) were investigated in this study. In the integration plot analysis that evaluates the transport activity in vivo, the apparent influx clearance of [3H]AZT was significantly greater than that of [14C]D-mannitol, a non-permeable paracellular transport marker. In the uptake study in vitro with TM4 cells derived from mouse Sertoli cells, [3H]AZT uptake exhibited a time- and concentration-dependent manner, of which Km and Vmax values being 20.3 µM and 102 pmol/(min·mg protein), respectively. In the inhibition analysis, [3H]AZT uptake was not affected by extracellular inorganics and some substrates of transporters putatively involved in AZT transport. In the further inhibition analyses to elucidate the characteristics of AZT transport, [3H]AZT uptake was strongly reduced in the presence of several nucleosides, that are categorized as 2'-deoxynucleosides with pyrimidine, whereas little effect on [3H]AZT uptake was exhibited in the presence of other nucleosides, nucleobases, and antiretrovirals. These results suggest the influx transport of AZT from the circulating blood to the testis, and the involvement of carrier-mediated process at the BTB, which selectively recognizes 2'-deoxynucleosides with a pyrimidine base.


Asunto(s)
Infecciones por VIH , Zidovudina , Animales , Transporte Biológico , Barrera Hematotesticular , Humanos , Masculino , Ratones , Pirimidinas
9.
Fluids Barriers CNS ; 19(1): 42, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658878

RESUMEN

BACKGROUND: Guanidinoacetate (GAA) induces epileptogenesis and neurotoxicity in the brain. As epileptic animal models have been reported to show elevated cerebral GAA levels, the processing mechanism of GAA in the brain is important for maintaining brain homeostasis. We have revealed that GAA in the cerebrospinal fluid (CSF) is removed by incorporation into the choroid plexus epithelial cells (CPxEpic), which form the blood-CSF barrier (BCSFB). However, the processing mechanism of GAA incorporated into CPxEpic remains unknown. We have reported that monocarboxylate transporter 12 (MCT12) functions as an efflux transporter of GAA and creatine, a metabolite of GAA, in the kidneys and liver. Therefore, we aimed to clarify the role of MCT12 in GAA dynamics in CPxEpic. METHODS: Protein expression and localization in CPxEpic were evaluated using immunohistochemistry. Metabolic analysis was performed using high-performance liquid chromatography (HPLC) 24 h after the addition of [14C]GAA to TR-CSFB3 cells, which are conditionally immortalized rat CPxEpic. The efflux transport of [14C]creatine was evaluated in TR-CSFB3 cells after transfection with MCT12 small interfering RNA (siRNA). The CSF-to-brain parenchyma transfer of creatine was measured after intracerebroventricular injection in rats. RESULTS: Immunohistochemical staining revealed that MCT12-derived signals merged with those of the marker protein at the apical membrane of CPxEpic, suggesting that MCT12 is localized on the apical membrane of CPxEpic. The expression levels of guanidinoacetate N-methyltransferase (GAMT), which catalyzes the conversion of GAA to creatine, in TR-CSFB3 cells was also indicated, and GAA was considered to be metabolized to creatine after influx transport into CPxEpic, after which creatine was released into the CSF. Creatine release from TR-CSFB3 cells decreased following MCT12 knockdown. The contribution ratio of MCT12 to the release of creatine was more than 50%. The clearance of CSF-to-brain parenchyma transfer of creatine was 4.65 µL/(min·g brain), suggesting that biosynthesized creatine in CPxEpic is released into the CSF and supplied to the brain parenchyma. CONCLUSIONS: In CPxEpic, GAA is metabolized to creatine via GAMT. Biosynthesized creatine is then released into the CSF via MCT12 and supplied to the brain parenchyma.


Asunto(s)
Creatina , Guanidinoacetato N-Metiltransferasa , Animales , Plexo Coroideo/metabolismo , Creatina/química , Creatina/metabolismo , Células Epiteliales/metabolismo , Glicina/análogos & derivados , Guanidinoacetato N-Metiltransferasa/metabolismo , Ratas
10.
J Control Release ; 343: 434-442, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104569

RESUMEN

Since it has been known that in vitro cell lines for analyzing drug transport at the inner blood-retinal barrier (BRB) do not completely retain several in vivo functions, new ex vivo/in vitro methods to evaluate drug transport across the inner BRB help us understand the role of this barrier in maintaining the homeostasis of vision and regulating drug distribution to the retina. To expand the limitations of existing in vitro approaches, we established a protocol to isolate fresh rat retinal capillaries as ex vivo model of the inner BRB. Fresh retinal capillaries were prepared by applying serial filtration steps and using density gradient centrifugation. We performed mRNA and protein analyses by reverse transcription-polymerase chain reaction and immunostaining that indicated expression of marker proteins such as facilitative glucose transporter 1 and claudin-5 in freshly isolated rat retinal capillaries. We also used fluorescent transporter substrates to characterize functional activity of organic anion transporter (Oat) 3, P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and multidrug resistance-associated protein (Mrp) 4 in isolated retinal capillaries. Capillary luminal accumulation of fluorescent substrates of P-glycoprotein and Bcrp was decreased in the presence of transporter inhibitors. Moreover, luminal accumulation of the Oat3 and Mrp4 substrate, 8-(2-[fluoresceinyl]aminoethylthio) adenosine-3',5'-cyclic monophosphate (8-[fluo]-cAMP), was reduced by substrates/inhibitors of Oat3 and Mrp4. In conclusion, our study shows that freshly isolated retinal capillaries retain marker protein expression and transporter functional activity. It is suggested that isolated retinal capillaries are a useful tool to study transport across the inner BRB. Using freshly isolated retinal capillaries, we anticipate applying this approach to determine the role of transporters at the inner BRB during pathophysiological states of the eye and evaluate the drug delivery to the retina.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Capilares , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Transporte Biológico , Capilares/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Ratas , Ratas Wistar , Retina/metabolismo
11.
Pharm Res ; 39(2): 223-237, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35112227

RESUMEN

PURPOSE: The present study aimed to elucidate the transport properties of imipramine and paroxetine, which are the antidepressants, across the blood-brain barrier (BBB) in rats. METHODS: In vivo influx and efflux transport of imipramine and paroxetine across the BBB were tested using integration plot analysis and a combination of brain efflux index and brain slice uptake studies, respectively. Conditionally immortalized rat brain capillary endothelial cells, TR-BBB13 cells, were utilized to characterize imipramine and paroxetine transport at the BBB in vitro. RESULTS: The in vivo influx clearance of [3H]imipramine and [3H]paroxetine in rats was determined to be 0.322 mL/(min·g brain) and 0.313 mL/(min·g brain), respectively. The efflux clearance of [3H]imipramine and [3H]paroxetine was 0.380 mL/(min·g brain) and 0.126 mL/(min·g brain), respectively. These results suggest that the net flux of paroxetine, but not imipramine, at the BBB in vivo was dominated by transport to the brain from the circulating blood. The uptake of imipramine and paroxetine by TR-BBB13 cells exhibited time- and temperature-dependence and one-saturable kinetics with a Km of 37.6 µM and 89.2 µM, respectively. In vitro uptake analyses of extracellular ion dependency and the effect of substrates/inhibitors for organic cation transporters and transport systems revealed minor contributions to known transporters and transport systems and the difference in transport properties in the BBB between imipramine and paroxetine. CONCLUSIONS: Our study showed the comprehensive outcomes of imipramine and paroxetine transport at the BBB, implying that molecular mechanism(s) distinct from previously reported transporters and transport systems are involved in the transport.


Asunto(s)
Antidepresivos de Segunda Generación/metabolismo , Antidepresivos Tricíclicos/metabolismo , Barrera Hematoencefálica/metabolismo , Imipramina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Paroxetina/metabolismo , Animales , Antidepresivos de Segunda Generación/administración & dosificación , Antidepresivos Tricíclicos/administración & dosificación , Transporte Biológico , Línea Celular , Imipramina/administración & dosificación , Inyecciones Intravenosas , Cinética , Masculino , Modelos Biológicos , Paroxetina/administración & dosificación , Permeabilidad , Ratas Wistar
12.
Metabolites ; 12(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35050188

RESUMEN

Taurine transport was investigated at the blood-testis barrier (BTB) formed by Sertoli cells. An integration plot analysis of mice showed the apparent influx permeability clearance of [3H]taurine (27.7 µL/(min·g testis)), which was much higher than that of a non-permeable paracellular marker, suggesting blood-to-testis transport of taurine, which may involve a facilitative taurine transport system at the BTB. A mouse Sertoli cell line, TM4 cells, showed temperature- and concentration-dependent [3H]taurine uptake with a Km of 13.5 µM, suggesting that the influx transport of taurine at the BTB involves a carrier-mediated process. [3H]Taurine uptake by TM4 cells was significantly reduced by the substrates of taurine transporter (TauT/SLC6A6), such as ß-alanine, hypotaurine, γ-aminobutyric acid (GABA), and guanidinoacetic acid (GAA), with no significant effect shown by L-alanine, probenecid, and L-leucine. In addition, the concentration-dependent inhibition of [3H]taurine uptake revealed an IC50 of 378 µM for GABA. Protein expression of TauT in the testis, seminiferous tubules, and TM4 cells was confirmed by Western blot analysis and immunohistochemistry by means of anti-TauT antibodies, and knockdown of TauT showed significantly decreased [3H]taurine uptake by TM4 cells. These results suggest the involvement of TauT in the transport of taurine at the BTB.

13.
Biochim Biophys Acta Biomembr ; 1864(3): 183840, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921896

RESUMEN

Creatine (Cr) is needed to maintain high energy levels in cells. Since Cr plays reportedly a critical role in neurodevelopment and the immune system, Cr dynamics should be strictly regulated to control these physiological events. This review focuses on the role of transporters that recognize Cr and/or Cr precursors. Our previous studies revealed physiological roles of SLC6A and SLC16A family transporters in Cr dynamics. Creatine transporter (CRT/SLC6A8) contributes to the influx transport of Cr in Cr distribution. γ-Aminobutyric acid transporter 2 (GAT2/SLC6A13) mediates incorporation of guanidinoacetate (GAA), a Cr precursor, in the process of Cr biosynthesis. Monocarboxylate transporter 12 (MCT12/SLC16A12) functions as an efflux transporter for Cr and GAA, and contributes to the process of Cr biosynthesis. Accordingly, the SLC6A and SLC16A family of transporters play important roles in the process of Cr biosynthesis and distribution via permeation of Cr and Cr precursors across the plasma membrane.


Asunto(s)
Creatina/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Creatina/química , Humanos
14.
Molecules ; 26(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34946611

RESUMEN

The total synthesis of two decahydroquinoline poison frog alkaloids ent-cis-195A and cis-211A were achieved in 16 steps (38% overall yield) and 19 steps (31% overall yield), respectively, starting from known compound 1. Both alkaloids were synthesized from the common key intermediate 11 in a divergent fashion, and the absolute stereochemistry of natural cis-211A was determined to be 2R, 4aR, 5R, 6S, and 8aS. Interestingly, the absolute configuration of the parent decahydroquinoline nuclei of cis-211A was the mirror image of that of cis-195A, although both alkaloids were isolated from the same poison frog species, Oophaga (Dendrobates) pumilio, from Panama.


Asunto(s)
Alcaloides/síntesis química , Quinolinas/síntesis química , Alcaloides/química , Animales , Anuros , Estructura Molecular , Panamá , Quinolinas/química , Estereoisomerismo
15.
Yakugaku Zasshi ; 141(12): 1319-1325, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34853204

RESUMEN

Since the retina continuously receives light to enable vision, reactive oxygen species (ROS) are easily generated in neural retina. The oxidative stress induced by ROS may be involved in the onset and progression of blinding aging diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Although supply of antioxidants to the retina is important to maintain the redox homeostasis in neural retina, the blood-retinal barrier (BRB) is created by complex tight-junctions of retinal capillary endothelial cells and retinal pigment epithelial cells to prevent the free diffusion of substances. The BRB is equipped with several membrane transporters to supply nutrients and essential molecules including antioxidants and drugs which exhibit antiaging effect to the retina from the circulating blood. In this review, the transporter-mediated retinal distribution of key endogenous compounds and drugs, such as vitamin C, l-cystine and gabapentin, is introduced for antiaging of the retina.


Asunto(s)
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Animales , Cistina/metabolismo , Retinopatía Diabética/etiología , Retinopatía Diabética/prevención & control , Células Endoteliales/metabolismo , Gabapentina/metabolismo , Glaucoma/etiología , Glaucoma/prevención & control , Homeostasis , Humanos , Degeneración Macular/etiología , Degeneración Macular/prevención & control , Oxidación-Reducción , Estrés Oxidativo/fisiología , Ratas , Uniones Estrechas/metabolismo
16.
Pharmaceutics ; 13(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34575415

RESUMEN

Amantadine, a drug used for the blockage of NMDA receptors, is well-known to exhibit neuroprotective effects. Accordingly, assessment of amantadine transport at retinal barriers could result in the application of amantadine for retinal diseases such as glaucoma. The objective of this study was to elucidate the retinal distribution of amantadine across the inner and outer blood-retinal barrier (BRB). In vivo blood-to-retina [3H]amantadine transport was investigated by using the rat retinal uptake index method, which was significantly reduced by unlabeled amantadine. This result indicated the involvement of carrier-mediated processes in the retinal distribution of amantadine. In addition, in vitro model cells of the inner and outer BRB (TR-iBRB2 and RPE-J cells) exhibited saturable kinetics (Km in TR-iBRB2 cells, 79.4 µM; Km in RPE-J cells, 90.5 and 9830 µM). The inhibition of [3H]amantadine uptake by cationic drugs/compounds indicated a minor contribution of transport systems that accept cationic drugs (e.g., verapamil), as well as solute carrier (SLC) organic cation transporters. Collectively, these outcomes suggest that carrier-mediated transport systems, which differ from reported transporters and mechanisms, play a crucial role in the retinal distribution of amantadine across the inner/outer BRB.

17.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G113-G122, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075817

RESUMEN

Creatine (Cr)/phosphocreatine has the ability to buffer the high-energy phosphate, thereby contributing to intracellular energy homeostasis. As Cr biosynthetic enzyme deficiency is reported to increase susceptibility to colitis under conditions of inflammatory stress, Cr is critical for maintaining intestinal homeostasis under inflammatory stress. Cr is mainly produced in the hepatocytes and then distributed to other organs of the body by the circulatory system. Since monocarboxylate transporter 9 (MCT9) and monocarboxylate transporter 12 (MCT12) have been reported to accept Cr as a substrate, these transporters are proposed as candidates for Cr efflux transporter in the liver. The aim of this study was to elucidate the transport mechanism on Cr supply from the hepatocytes. Immunohistochemical staining of the rat liver sections revealed that both MCT9 and MCT12 were localized on the sinusoidal membrane of the hepatocytes. In the transport studies using Xenopus laevis oocyte expression system, [14C]Cr efflux from MCT9- or MCT12-expressing oocytes was significantly greater than that from water-injected oocytes. [14C]Cr efflux from primary cultured hepatocytes was significantly decreased following MCT12 mRNA knockdown, whereas this efflux was not decreased after mRNA knockdown of MCT9. Based on the extent of MCT12 protein downregulation and Cr efflux after knockdown of MCT12 in primary cultured rat hepatocytes, the contribution ratio of MCT12 in Cr efflux was calculated as 76.4%. Our study suggests that MCT12 substantially contributes to the efflux of Cr at the sinusoidal membrane of the hepatocytes.NEW & NOTEWORTHY Our study is the first to identify the role of monocarboxylate transporter 12 (MCT12) as a transporter of creatine (Cr) in the liver. MCT12 was found to significantly contribute to the efflux of Cr on the sinusoidal membrane of the hepatocytes. Since hepatocytes are known to be involved in creatine biosynthesis, the present findings can be beneficial for the regulation of Cr biosynthesis and supply.


Asunto(s)
Capilares/metabolismo , Creatina/metabolismo , Hepatocitos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Animales , Creatina/sangre , Femenino , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Conejos , Ratas , Ratas Wistar , Xenopus
18.
Biol Pharm Bull ; 44(3): 389-395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642546

RESUMEN

Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay. This was then used to calculate PK parameters and predict human PK profiles. The mAbs showed a bi-phased elimination pattern, and clearance (CL) (mL/d/kg) and distribution volume at steady state (Vdss) (mL/kg) ranges were 11.0 to 131 and 110 to 285, respectively. There was a correlation in half-life at elimination phase (t1/2ß) between hFcRn TgM and humans for 10 mAbs showing CL of more than 80% in the elimination phase (R2 = 0.714). Human t1/2ß was predicted using hFcRn TgM t1/2ß; 9 out of 10 mAbs were within 2-fold the actual values, and all mAbs were within 3-fold. Regarding the predicted CL values, 7 out of 10 mAbs were within 2-fold the human values and all mAbs were within 3-fold. Furthermore, even on day 7 the predicted CL values of 8 out of 10 mAbs were within 2-fold the observed value, with all mAbs within 3-fold. These results suggest human PK profiles can be predicted using hFcRn TgM data. These methods can accelerate the development of antibody drugs while also reducing cost and improving throughput.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Antígenos de Histocompatibilidad Clase I/genética , Modelos Biológicos , Receptores Fc/genética , Animales , Anticuerpos Monoclonales/sangre , Evaluación Preclínica de Medicamentos , Humanos , Ratones Transgénicos , Modelos Animales
19.
Pharm Res ; 38(1): 113-125, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33527223

RESUMEN

PURPOSE: In this study, we investigated in detail the transport of phenytoin across the blood-brain barrier (BBB) to identify the transporter(s) involved in BBB-mediated phenytoin efflux from the brain. METHODS: We evaluated the brain-to-blood efflux transport of phenytoin in vivo by determining the brain efflux index (BEI) and uptake in brain slices. We additionally conducted brain perfusion experiments and BEI studies in P-glycoprotein (P-gp)-deficient mice. In addition, we determined the mRNA expression of monocarboxylate transporter (MCT) in isolated brain capillaries and performed phenytoin uptake studies in MCT-expressing Xenopus oocytes. RESULTS: [14C]Phenytoin brain efflux was time-dependent with a half-life of 17 min in rats and 31 min in mice. Intracerebral pre-administration of unlabeled phenytoin attenuated BBB-mediated phenytoin efflux transport, suggesting carrier-mediated phenytoin efflux transport across the BBB. Pre-administration of P-gp substrates in rats and genetic P-gp deficiency in mice did not affect BBB-mediated phenytoin efflux transport. In contrast, pre-administration of MCT8 inhibitors attenuated phenytoin efflux. Moreover, rat MCT8-expressing Xenopus oocytes exhibited [14C]phenytoin uptake, which was inhibited by unlabeled phenytoin. CONCLUSION: Our data suggest that MCT8 at the BBB participates in phenytoin efflux transport from the brain to the blood.


Asunto(s)
Anticonvulsivantes/farmacocinética , Barrera Hematoencefálica/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fenitoína/farmacocinética , Simportadores/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Anticonvulsivantes/administración & dosificación , Femenino , Semivida , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Fenitoína/administración & dosificación , Ratas
20.
Biol Pharm Bull ; 43(11): 1669-1677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132311

RESUMEN

Prostaglandin (PG) D2 is a lipid mediator, and in the brain, overproduction of PGD2 is reportedly involved in the progression and exacerbation of neuroinflammation. The objective of this study was to elucidate PGD2 efflux transport, under normal and inflammatory conditions, across the blood-brain barrier (BBB), which is formed by brain capillaries. Elimination of [3H]PGD2 across the BBB of normal and lipopolysaccharide (LPS)-induced inflammatory rats was examined by the intracerebral microinjection technique. After intracerebral injection, the percentage of [3H]PGD2 remaining in the ipsilateral cerebrum decreased with time, with a half-life of 13 min. This [3H]PGD2 elimination across the BBB was significantly inhibited by the co-administration of unlabeled PGD2, which suggests carrier-mediated PGD2 efflux transport at the BBB. In isolated rat brain capillaries, mRNA expression of organic anion transporter (Oat) 3, organic anion-transporting polypeptide (Oatp) 1a4, and multidrug resistance-associated protein (Mrp) 4 was observed. In addition, co-administration of substrates/inhibitors for Oat3, Oatp1a4, and/or Mrp4, such as benzylpenicillin and cefmetazole, reduced [3H]PGD2 elimination across the BBB. Data suggest that Oat3 and Mrp4, but not Oatp1a4 are involved in PGD2 elimination across the BBB, as Oatp1a4-expressing Xenopus (X.) oocytes did not show the significant [3H]PGD2 uptake compared with water-injected X. oocytes. In LPS-treated rats, [3H]PGD2 elimination across the BBB and mRNA expression levels of Oat3 and Mrp4 were significantly decreased. Our data suggest that Oat3- and Mrp4-mediated PGD2 elimination across the BBB is attenuated under inflammatory conditions.


Asunto(s)
Barrera Hematoencefálica/patología , Encefalopatías/inmunología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Prostaglandina D2/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/inmunología , Encefalopatías/patología , Cefmetazol/administración & dosificación , Modelos Animales de Enfermedad , Regulación hacia Abajo/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Masculino , Microinyecciones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Oocitos , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Penicilina G/administración & dosificación , Ratas , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...