Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(8): 112846, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516961

RESUMEN

Several phospholipid (PL) molecules are intertwined with some mitochondrial complex I (CI) subunits in the membrane domain of CI, but their function is unclear. We report that when the Drosophila melanogaster ortholog of the intramitochondrial PL transporter, STARD7, is severely disrupted, assembly of the oxidative phosphorylation (OXPHOS) system is impaired, and the biogenesis of several CI subcomplexes is hampered. However, intriguingly, a restrained knockdown of STARD7 impairs the incorporation of NDUFS5 and NDUFA1 into the proximal part of the CI membrane domain without directly affecting the incorporation of subunits in the distal part of the membrane domain, OXPHOS complexes already assembled, or mitochondrial cristae integrity. Importantly, the restrained knockdown of STARD7 appears to induce a modest amount of cardiolipin remodeling, indicating that there could be some alteration in the composition of the mitochondrial phospholipidome. We conclude that PLs can regulate CI biogenesis independent of their role in maintaining mitochondrial membrane integrity.


Asunto(s)
Membranas Mitocondriales , Fosfolípidos , Animales , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Cardiolipinas/metabolismo , Fosforilación Oxidativa
2.
Sci Rep ; 12(1): 22433, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575244

RESUMEN

The boot-shaped respiratory complex I (CI) consists of a mitochondrial matrix and membrane domain organized into N-, Q- and P-modules. The N-module is the most distal part of the matrix domain, whereas the Q-module is situated between the N-module and the membrane domain. The proton-pumping P-module is situated in the membrane domain. We explored the effect of aging on the disintegration of CI and its constituent subcomplexes and modules in Drosophila flight muscles. We find that the fully-assembled complex remains largely intact in aged flies. And while the effect of aging on the stability of many Q- and N-module subunits in subcomplexes was stochastic, NDUFS3 was consistently down-regulated in subcomplexes with age. This was associated with an accumulation of many P-module subunits in subcomplexes. The potential significance of these studies is that genetic manipulations aimed at boosting, perhaps, a few CI subunits may suffice to restore the whole CI biosynthesis pathway during muscle aging.


Asunto(s)
Drosophila melanogaster , Complejo I de Transporte de Electrón , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Membranas/metabolismo , Músculos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33671655

RESUMEN

α-Lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are endogenous dithiol compounds with significant antioxidant properties, both of which have the potential to detoxify cells. In this study, ALA (250 µM) and DHLA (50 µM) were applied to reduce metal (As, Cd, and Pb)-induced toxicity in PC12 and Caco-2 cells as simultaneous exposure. Both significantly decreased Cd (5 µM)-, As (5 µM)-, and Pb (5 µM)-induced cell death. Subsequently, both ALA and DHLA restored cell membrane integrity and intracellular glutathione (GSH) levels, which were affected by metal-induced toxicity. In addition, DHLA protected PC12 cells from metal-induced DNA damage upon co-exposure to metals. Furthermore, ALA and DHLA upregulated the expression of survival-related proteins mTOR (mammalian target of rapamycin), Akt (protein kinase B), and Nrf2 (nuclear factor erythroid 2-related factor 2) in PC12 cells, which were previously downregulated by metal exposure. In contrast, in Caco-2 cells, upon co-exposure to metals and ALA, Nrf2 was upregulated and cleaved PARP-1 (poly (ADP-ribose) polymerase-1) was downregulated. These findings suggest that ALA and DHLA can counterbalance the toxic effects of metals. The protection of ALA or DHLA against metal toxicity may be largely due to an enhancement of antioxidant defense along with reduced glutathione level, which ultimately reduces the cellular oxidative stress.


Asunto(s)
Ácido Tióctico , Animales , Antioxidantes , Células CACO-2 , Humanos , Estrés Oxidativo , Células PC12 , Ratas , Ácido Tióctico/análogos & derivados , Ácido Tióctico/farmacología
4.
Ecotoxicol Environ Saf ; 207: 111320, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32947215

RESUMEN

Mercury (Hg) is a hazardous metal, poses environmental problems with severe human health effects; whereas zinc (Zn) is an essential micronutrient with antioxidant properties. The purpose of this research was to investigate the effect of Zn on inorganic Hg-induced cytotoxicity in the PC12 cells. The cells were treated with HgCl2 (5 µM) for 48 h with/without 1 h prior ZnCl2-treatment (100 µM) and deliberated for further analysis. After 48 h of incubation with only Hg2+, the cell showed reduced cell viability, compromised cell membrane, DNA degradation, depleted glutathione level, ROS generation and drastically increased apoptosis. Subsequently, Hg2+-treated cells demonstrated a significant downregulation of akt, mTOR, ERK1, Nrf2, HO1, Bcl-2, Bcl-xL, and upregulation of p53, Bax, cytochrome c and cleaved caspase 3, indicating intrinsic apoptosis induction. However, cells pretreated with Zn2+ before Hg2+-exposure showed a significant improvement in cell viability, cell membrane, DNA damage, glutathione level, ROS amount and apoptotic cells, with a significant upregulation in mTOR, akt, ERK1, Nrf2, HO1, Bcl-2 and Bcl-xL, and downregulation in p53, Bax, cytochrome c and cleaved caspase 3, indicating inhibition of apoptosis. The findings suggested that Zn2+-pretreatment not only improves glutathione content but also induces activation of Nrf2-HO1 pathway, which would tend to suppress Hg-cytotoxicity.


Asunto(s)
Glutatión/metabolismo , Mercurio/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Zinc/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3 , Supervivencia Celular/efectos de los fármacos , Humanos , Células PC12 , Proteínas Proto-Oncogénicas c-bcl-2 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Ecotoxicol Environ Saf ; 207: 111262, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916531

RESUMEN

Mercury (Hg) in its all forms, including inorganic Hg (iHg) is an environmental contaminant due to toxicity and diseases in human. However, a little is known about the underlying mechanisms responsible for iHg toxicity. Selenium (Se) is an essential trace element, recognized as an antioxidant and protective agent against metal toxicities. The purpose of this research was to investigate ameliorations of Se counter to iHg-mediated toxicity in PC12 cells. Cytotoxic assays have been shown that iHg (5 µM) caused oxidative stress and intrinsic apoptosis via ROS generation, oxidizing glutathione, damaging DNA, degrading cell membrane integrity, down-regulating mTOR, p-mTOR, akt and ERK1, and up-regulating cleaved caspase 3 and cytochrome c release in PC12 cells 48 h after incubation. Co-treatment of Se (5 µM) inhibited intrinsic apoptosis and oxidative stress induced by iHg (5 µM) via inhibiting ROS formation, boosting GPx contents, increasing reduced glutathione, limiting DNA degradation, improving cell membrane integrity, up-regulating mTOR, p-mTOR, akt, ERK1 and caspase 3, and down-regulating cleaved caspase 3 and cytochrome c leakage in PC12 cells. In conclusion, these results recommended that excessive ROS generation acts a critical role in iHg-influenced oxidative stress and co-treatment of Se attenuates iHg-cytotoxicity through its antioxidant properties.


Asunto(s)
Sustancias Peligrosas/toxicidad , Mercurio/toxicidad , Sustancias Protectoras/farmacología , Selenio/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3 , Citocromos c/metabolismo , Glutatión/metabolismo , Humanos , Mercurio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR
6.
Food Chem Toxicol ; 146: 111819, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33091556

RESUMEN

Mercury (Hg) is a toxic metal, well-known for its dangerous health effects on human. Butylated hydroxytoluene (BHT) is a phenolic component generally consumed as a food additive as an antioxidant. However, BHT induced antioxidant properties against heavy metals-influenced toxicity are little studied. We hypothesized that BHT has a regulatory effect on Hg-induced cytotoxicity. The objective of this research was to assess the protecting effects of BHT against inorganic Hg (iHg)-toxicity in PC12 cells, where cells were treated with/without HgCl2 (Hg2+) (5 µM) and BHT (100 µM) for 48 h and analyzed further. Cells treated by Hg caused a significant cell viability reduction, membrane damage, glutathione reduction, DNA fragmentation, ROS generation, with suppressed expressions of akt, mTOR, ERK1, Nrf2 and HO1; and elevated apoptotic expressions of p53, Bax, cytochrome c and active caspase 3. However, BHT and Hg2+ co-exposure showed prevention against Hg2+-toxicity by improving GSH content and inhibiting ROS generation and oxidative stress mediated damages. Additionally, BHT co-treatment inverted the pro-apoptotic proteins by augmenting pro-survival regulatory proteins akt, mTOR, ERK1, Nrf2 and HO1. These findings proved that BHT inhibits Hg2+-toxicity, hindering ROS generation and intrinsic apoptosis, via enhancing glutathione and antioxidants; and suggested BHT implications as therapeutic.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Hidroxitolueno Butilado/farmacología , Supervivencia Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Células PC12 , Ratas
7.
Ecotoxicol Environ Saf ; 168: 146-163, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30384162

RESUMEN

Metals are ubiquitous in the environment due to huge industrial applications in the form of different chemicals and from extensive mining activities. The frequent exposures to metals and metalloids are crucial for the human health. Trace metals are beneficial for health whereas non-essential metals are dangerous for the health and some are proven etiological factors for diseases including cancers and neurological disorders. The interactions of essential trace metals such as selenium (Se) and zinc (Zn) with non-essential metals viz. lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) in biological system are very critical and complex. A huge number of studies report the protective role of Se and Zn against metal toxicity, both in animal and cellular levels, and also explain the numerous mechanisms involved. However, it has been considered that a tiny dyshomeostasis in the metals/trace metals status in biological system could induce severe deleterious effects that can manifest to numerous diseases. Thus, in this particular review, we have demonstrated the critical protection mechanism/s of Se and Zn against Cd, Pb, As and Hg toxicity in a one by one manner to clarify the up-to-date findings and perspectives. Furthermore, biomolecular consequences are comprehensively presented in light of particular cellular/biomolecular events which are somehow linked to a subsequent disease. The analyzed reports support significant protection potential of Se and Zn, either alone or in combination with other agents, against each of the abovementioned non-essential metals. However, Se and Zn are still not being used as detoxifying agents due to some unexplained reasons. We hypothesized that Se could be a potential candidate for detoxifying As and Hg regardless of their chemical speciations, but requires intensive clinical trials. However, particularly Zn-Hg interaction warrants more investigations both in animal and cellular level.


Asunto(s)
Sustancias Protectoras/farmacología , Selenio/farmacología , Zinc/farmacología , Animales , Arsénico/toxicidad , Cadmio/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Plomo/toxicidad , Mercurio/toxicidad , Metales Pesados/toxicidad , Modelos Animales , Salud Pública , Oligoelementos/farmacología
8.
J Adv Res ; 9: 1-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30046482

RESUMEN

With the development of nanotechnology, silver nanoparticles (Ag-NPs) have become one of the most in-demand nanoparticles owing to their exponential number of uses in various sectors. The increased use of Ag-NPs-enhanced products may result in an increased level of toxicity affecting both the environment and living organisms. Several studies have used different model cell lines to exhibit the cytotoxicity of Ag-NPs, and their underlying molecular mechanisms. This review aimed to elucidate different properties of Ag-NPs that are responsible for the induction of cellular toxicity along with the critical mechanism of action and subsequent defense mechanisms observed in vitro. Our results show that the properties of Ag-NPs largely vary based on the diversified synthesis processes. The physiochemical properties of Ag-NPs (e.g., size, shape, concentration, agglomeration, or aggregation interaction with a biological system) can cause impairment of mitochondrial function prior to their penetration and accumulation in the mitochondrial membrane. Thus, Ag-NPs exhibit properties that play a central role in their use as biocides along with their applicability in environmental cleaning. We herein report a current review of the synthesis, applicability, and toxicity of Ag-NPs in relation to their detailed characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...