Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 858(Pt 3): 160118, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379331

RESUMEN

Although microplastic (MP) pollution of aquatic ecosystems is a high-priority study topic, the issue of terrestrial environment and textile manufacturing waste has received little attention. Thus, this study was carried out to investigate the presence of MPs in agricultural land near textile industries and textile sludge samples in Bangladesh. Thirty-two soil samples from four agricultural farmland and five sludge samples were collected and analyzed. We show that the MPs content from agricultural farmland soil and textile sludge samples was 2.13 × 104 ± 0.13 × 104 MPs/kg and 2.92 × 104 ± 0.14 × 104 MPs/kg, respectively. MPs with a size between 1.0 and 1.5 mm were the least frequent in both soil and textile sludge samples. Fibers were more prevalent in textile sludge and fragments in soil samples. In addition, the percentage of transparent/white MPs was higher in the soil samples, and those classified as "multicolor" and "others" were more frequent in the sludge samples. Nine types of polymers were identified in the soil samples: PS, EVA, latex, HDPE, PVC, ABS, CA, LDPE, and PP. Except for LDPE, all these polymers were also found in the textile sludge samples, in addition to PU, nylon, and FEP, totaling eleven polymer types. On the other hand, we did not find evidence to support the association between MP contamination in soil samples and MPs identified in textile sludge samples. As demonstrated in the principal components analysis (PCA), the analyzed samples were separated by PC1, which suggests that the MPs reported in the soil come from sources that are not directly related to the textile industries. Thus, further research is needed to fully reveal MPs' fate and ecological risks in the soil environment and textile sludge, and necessary action is required to control MP pollution in terrestrial ecosystems.


Asunto(s)
Plásticos , Suelo , Microplásticos , Aguas del Alcantarillado , Ecosistema
2.
Sci Total Environ ; 837: 155849, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561897

RESUMEN

Although several studies are confirming the ubiquity of microplastics (MPs) in environments, our knowledge about their effects on human health is still very limited. Therefore, while we have not gathered definitive information on their consequences, studies that aim to identify the MPs sources constitute subsidies to better understand the various exposure pathways to these pollutants. Thus, we investigated the possible presence of MP-like particles in five brands of commercial sugars and two unpacked, unbranded, and unlabeled sugars (hereinafter referred to as "non-branded"), obtained from different supermarkets in Dhaka (Bangladesh). Surprisingly, MPs-like particles were identified in all analyzed samples and taken together, our data demonstrated similar variations (between branded and non-branded samples) in terms of number, size, shape, color, and polymer composition. The number of plastic particles/kg sugar was, on average, 343.7 ± 32.08 (mean ± SEM), having been observed a tendency for a higher frequency of MPs < 300 µm. Overall, microfibers and spherules were the most and the predominant colors of MPs (in general) were black, pink, blue, and brown. The FT-IR analysis confirmed the chemical nature of MPs (in branded and non-branded), having identified nine polymeric types (ABS, PCV, PET, EVA, CA, PTFE, HDPE, PC, and nylon), being ABS and PVC the most frequent. Furthermore, we estimate that sugar consumption in Dhaka City can cause the ingestion of millions of tons of MPs annually (2.4 to 25.6 tons) (with an average of 10.2 tons). Our study is the most comprehensive report on the MP's occurrence in sugar, confirming that the ingestion of this food constitutes an important route of human exposure to these micropollutants and, therefore, serves as a baseline for future assessments and useful for generating efficient strategies to control MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Bangladesh , Monitoreo del Ambiente , Humanos , Plásticos/análisis , Medición de Riesgo , Espectroscopía Infrarroja por Transformada de Fourier , Azúcares , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA