Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(21): 211802, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461969

RESUMEN

The 96.4 day exposure of a 3 kg ultralow noise germanium detector to the high flux of antineutrinos from a power nuclear reactor is described. A very strong preference (p<1.2×10^{-3}) for the presence of a coherent elastic neutrino-nucleus scattering (CEνNS) component in the data is found, when compared to a background-only model. No such effect is visible in 25 days of operation during reactor outages. The best-fit CEνNS signal is in good agreement with expectations based on a recent characterization of germanium response to sub-keV nuclear recoils. Deviations of order 60% from the standard model CEνNS prediction can be excluded using present data. Standing uncertainties in models of germanium quenching factor, neutrino energy spectrum, and background are examined.

2.
Phys Rev Lett ; 125(24): 241803, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412014

RESUMEN

We present constraints on the existence of weakly interacting massive particles (WIMPs) from an 11 kg d target exposure of the DAMIC experiment at the SNOLAB underground laboratory. The observed energy spectrum and spatial distribution of ionization events with electron-equivalent energies >200 eV_{ee} in the DAMIC CCDs are consistent with backgrounds from natural radioactivity. An excess of ionization events is observed above the analysis threshold of 50 eV_{ee}. While the origin of this low-energy excess requires further investigation, our data exclude spin-independent WIMP-nucleon scattering cross sections σ_{χ-n} as low as 3×10^{-41} cm^{2} for WIMPs with masses m_{χ} from 7 to 10 GeV c^{-2}. These results are the strongest constraints from a silicon target on the existence of WIMPs with m_{χ}<9 GeV c^{-2} and are directly relevant to any dark matter interpretation of the excess of nuclear-recoil events observed by the CDMS silicon experiment in 2013.

3.
Phys Rev Lett ; 123(18): 181802, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763884

RESUMEN

We report direct-detection constraints on light dark matter particles interacting with electrons. The results are based on a method that exploits the extremely low levels of leakage current of the DAMIC detector at SNOLAB of 2-6×10^{-22} A cm^{-2}. We evaluate the charge distribution of pixels that collect <10e^{-} for contributions beyond the leakage current that may be attributed to dark matter interactions. Constraints are placed on so-far unexplored parameter space for dark matter masses between 0.6 and 100 MeV c^{-2}. We also present new constraints on hidden-photon dark matter with masses in the range 1.2-30 eV c^{-2}.

4.
Science ; 357(6356): 1123-1126, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28775215

RESUMEN

The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. We observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process, were observed in high signal-to-background conditions. Improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.

5.
Rev Sci Instrum ; 83(11): 113503, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23206058

RESUMEN

Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

6.
Phys Rev Lett ; 107(14): 141301, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-22107183

RESUMEN

Fifteen months of cumulative CoGeNT data are examined for indications of an annual modulation, a predicted signature of weakly interacting massive particle (WIMP) interactions. Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of light-mass WIMPs. Unoptimized estimators yield a statistical significance for a modulation of ∼2.8σ, limited by the short exposure.

7.
Phys Rev Lett ; 106(13): 131301, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21517370

RESUMEN

We report on several features in the energy spectrum from an ultralow-noise germanium detector operated deep underground. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss an irreducible excess of bulklike events below 3 keV in ionization energy. These could be caused by unknown backgrounds, but also dark matter interactions consistent with DAMA/LIBRA. It is not yet possible to determine their origin. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.

8.
Appl Radiat Isot ; 67(5): 746-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19251426

RESUMEN

The International Monitoring System (IMS) of the Comprehensive Test Ban Treaty includes a network of stations and laboratories for collection and analysis of radioactive aerosols. Alternative approaches to IMS operations are considered as a method of enhancing treaty verification. Ultra-low background (ULB) detection promises the possibility of improvements to IMS minimum detectable activities (MDAs) well below the current approach, requiring MDA < or = 30 microBq/m(3) of air for (140)Ba, or about 10(6) fissions per daily sample.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Cooperación Internacional , Monitoreo de Radiación/métodos , Aerosoles , Contaminantes Radiactivos del Aire/normas , Internacionalidad , Monitoreo de Radiación/normas , Radioisótopos/análisis
9.
Phys Rev Lett ; 101(25): 251301, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-19113689

RESUMEN

A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of weakly interacting massive particles as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars might lead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular, to next-to-minimal supersymmetric model candidates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...