Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(28): e202305982, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37178313

RESUMEN

The role of ß-CoOOH crystallographic orientations in catalytic activity for the oxygen evolution reaction (OER) remains elusive. We combine correlative electron backscatter diffraction/scanning electrochemical cell microscopy with X-ray photoelectron spectroscopy, transmission electron microscopy, and atom probe tomography to establish the structure-activity relationships of various faceted ß-CoOOH formed on a Co microelectrode under OER conditions. We reveal that ≈6 nm ß-CoOOH(01 1 ‾ ${\bar{1}}$ 0), grown on [ 1 ‾ 2 1 ‾ ${\bar{1}2\bar{1}}$ 0]-oriented Co, exhibits higher OER activity than ≈3 nm ß-CoOOH(10 1 ‾ ${\bar{1}}$ 3) or ≈6 nm ß-CoOOH(0006) formed on [02 2 ‾ 1 ] ${\bar{2}1]}$ - and [0001]-oriented Co, respectively. This arises from higher amounts of incorporated hydroxyl ions and more easily reducible CoIII -O sites present in ß-CoOOH(01 1 ‾ ${\bar{1}}$ 0) than those in the latter two oxyhydroxide facets. Our correlative multimodal approach shows great promise in linking local activity with atomic-scale details of structure, thickness and composition of active species, which opens opportunities to design pre-catalysts with preferred defects that promote the formation of the most active OER species.

2.
ACS Phys Chem Au ; 3(1): 119-129, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36718265

RESUMEN

Water is an integral component in electrochemistry, in the generation of the electric double layer, and in the propagation of the interfacial electric fields into the solution; however, probing the molecular-level structure of interfacial water near functioning electrode surfaces remains challenging. Due to the surface-specificity, sum-frequency-generation (SFG) spectroscopy offers an opportunity to investigate the structure of water near working electrochemical interfaces but probing the hydrogen-bonded structure of water at this buried electrode-electrolyte interface was thought to be impossible. Propagating the laser beams through the solvent leads to a large attenuation of the infrared light due to the absorption of water, and interrogating the interface by sending the laser beams through the electrode normally obscures the SFG spectra due to the large nonlinear response of conduction band electrons. Here, we show that the latter limitation is removed when the gold layer is thin. To demonstrate this, we prepared Au gradient films on CaF2 with a thickness between 0 and 8 nm. SFG spectra of the Au gradient films in contact with H2O and D2O demonstrate that resonant water SFG spectra can be obtained using Au films with a thickness of ∼2 nm or less. The measured spectra are distinctively different from the frequency-dependent Fresnel factors of the interface, suggesting that the features we observe in the OH stretching region indeed do not arise from the nonresonant response of the Au films. With the newfound ability to probe interfacial solvent structure at electrode/aqueous interfaces, we hope to provide insights into more efficient electrolyte composition and electrode design.

3.
Angew Chem Int Ed Engl ; 60(33): 18065-18072, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-33780115

RESUMEN

We report the synthesis of a unique cubic metal-organic framework (MOF), Fe-HHTP-MOF, comprising hexahydroxytriphenylene (HHTP) supertetrahedral units and FeIII ions, arranged in a diamond topology. The MOF is synthesized under solvothermal conditions, yielding a highly crystalline, deep black powder, with crystallites of 300-500 nm size and tetrahedral morphology. Nitrogen sorption analysis indicates a highly porous material with a surface area exceeding 1400 m2 g-1 . Furthermore, Fe-HHTP-MOF shows broadband absorption from 475 up to 1900 nm with excellent absorption capability of 98.5 % of the incoming light over the visible spectral region. Electrical conductivity measurements of pressed pellets reveal a high intrinsic electrical conductivity of up to 10-3  S cm-1 . Quantum mechanical calculations predict Fe-HHTP-MOF to be an efficient electron conductor, exhibiting continuous charge-carrier pathways throughout the structure.

4.
Nanoscale ; 11(43): 20949-20955, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31660561

RESUMEN

Recently, a small group of metal-organic frameworks (MOFs) has been discovered featuring substantial charge transport properties and electrical conductivity, hence promising to broaden the scope of potential MOF applications in fields such as batteries, fuel cells and supercapacitors. In combination with light emission, electroactive MOFs are intriguing candidates for chemical sensing and optoelectronic applications. Here, we incorporated anthracene-based building blocks into the MOF-74 topology with five different divalent metal ions, that is, Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, resulting in a series of highly crystalline MOFs, coined ANMOF-74(M). This series of MOFs features substantial photoluminescence, with ANMOF-74(Zn) emitting across the whole visible spectrum. The materials moreover combine this photoluminescence with high surface areas and electrical conductivity. Compared to the original MOF-74 materials constructed from 2,5-dihydroxy terephthalic acid and the same metal ions Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, we observed a conductivity enhancement of up to six orders of magnitude. Our results point towards the importance of building block design and the careful choice of the embedded MOF topology for obtaining materials with desired properties such as photoluminescence and electrical conductivity.

5.
Food Chem Toxicol ; 113: 267-277, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29341878

RESUMEN

Exposure to heavy metals such as arsenic (As), lead (Pb), and cadmium (Cd) in either the short or the long term can cause cancers in humans. Dietary intake and consumption of rice (Oryza sativa L.) is increasing in Iran, and several studies on the concentration of heavy metals in rice have been carried out in this country in recent years. In this perspective, the main objective of the present study was to investigate, even via a meta-analysis of the existing literature, the presence of As and Pb in rice from many geographical areas in Iran, as well as to estimate the carcinogenic risk of these heavy metals in rice consumers. The results of the present ten years-spanning systematic review indicate that 21 reports, collecting a total of 2088 samples, were performed between 2008 and October 2017. The minimum and maximum concentration of As was observed in the Golestan area (0.01 ±â€¯0.01 mg/kg d.w) and the Gillan region (3 mg/kg d.w); and Pb in the Shahrekord (0.07 ±â€¯0.02 mg/kg d.w) and Mazandaran (35 mg/kg d.w). The meta-analysis of data showed that pooled concentration of As in the rice was 0.04 (95%CI: 0.02-0.06 mg/kg d.w), which resulted lower than the National Standard (NS) limits. However, the pooled concentration of Pb in the rice was 0.38 (95%CI: 0.25-0.5 mg/kg d.w), i.e., higher than NS limits. The heterogeneity was significant between As (I2 = 63%, P value = .003) and Pb (I2 = 96%, P value < .001) studies. The carcinogenic risk assessment showed that minimum and maximum incremental lifetime cancer risk (ILCR) of As was in the 45-54 (4.53 × 10-2) and 15-24 (5.50 × 10-2) year age groups consumers; and Pb, 45-54 (2.442 × 10-3) and 15-24 (2.96 × 10-3), respectively. The overall carcinogenesis risk of As (4.864 × 10-2) was 18.5 times higher than Pb (2.623 × 10-3). All age groups consumers of rice content of As and Pb are at considerable carcinogenesis risk (ILCR > 10-3). Therefore a decreased level of heavy metals in rice cultivation should be encouraged and performed in next planning.


Asunto(s)
Arsénico/análisis , Carcinógenos/toxicidad , Contaminación de Alimentos/análisis , Plomo/análisis , Neoplasias de la Boca/inducido químicamente , Oryza/química , Adolescente , Adulto , Humanos , Irán/epidemiología , Persona de Mediana Edad , Neoplasias de la Boca/epidemiología , Prevalencia , Medición de Riesgo , Adulto Joven
6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-950579

RESUMEN

Objective To investigate the healing effects of two herbal preparations. Methods For this purpose, 106 wistar rats were divided into 9 groups including a control, eucerine, phenytoin, Urtica dioica (U. dioica) (2%), U. dioica (5%), Sambucus ebulus (S. ebulus) (2%), S. ebulus (5%), combination (2%), and combination (5%) groups. The control group remained untreated, the eucerin and phenytoin groups were considered as the negative and positive controls respectively, and the remaining groups received different concentrations of the ointments. Full thickness wounds were made. The healing process of the wounds was investigated on day 7, 14 and 21 of the experiment. Several factors including the number of fibroblasts, new vessel formation (angiogenesis), thickness of the granulomatous tissues (GT), and the overlying epithelium were analyzed. Results Among the studied groups, all of the treatment groups were significantly different from the control, eucerin, and phenytoin groups in a positive manner with regard to all studied factors (P ≤ 0.05). However, the best results were observed with the S. ebulus (2%) and the combination 2% groups (P ≤ 0.05). Conclusions Topical ointments prepared from the extracts of U. dioica and S. ebulus and their combination possess strong wound healing properties. It is postulated that a synergistic effect may exist between the two extracts since the combination 2% showed better results than the sole extracts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...