Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 73(10): 2089-104, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26573968

RESUMEN

Spinal muscular atrophy (SMA) is a devastating motoneuron (MN) disorder caused by homozygous loss of SMN1. Rarely, SMN1-deleted individuals are fully asymptomatic despite carrying identical SMN2 copies as their SMA III-affected siblings suggesting protection by genetic modifiers other than SMN2. High plastin 3 (PLS3) expression has previously been found in lymphoblastoid cells but not in fibroblasts of asymptomatic compared to symptomatic siblings. To find out whether PLS3 is also upregulated in MNs of asymptomatic individuals and thus a convincing SMA protective modifier, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of three asymptomatic and three SMA III-affected siblings from two families and compared these to iPSCs from a SMA I patient and control individuals. MNs were differentiated from iPSC-derived small molecule neural precursor cells (smNPCs). All four genotype classes showed similar capacity to differentiate into MNs at day 8. However, SMA I-derived MN survival was significantly decreased while SMA III- and asymptomatic-derived MN survival was moderately reduced compared to controls at day 27. SMN expression levels and concomitant gem numbers broadly matched SMN2 copy number distribution; SMA I presented the lowest levels, whereas SMA III and asymptomatic showed similar levels. In contrast, PLS3 was significantly upregulated in mixed MN cultures from asymptomatic individuals pinpointing a tissue-specific regulation. Evidence for strong PLS3 accumulation in shaft and rim of growth cones in MN cultures from asymptomatic individuals implies an important role in neuromuscular synapse formation and maintenance. These findings provide strong evidence that PLS3 is a genuine SMA protective modifier.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Células-Madre Neurales/citología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Regulación hacia Arriba , Biopsia , Diferenciación Celular , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Silenciador del Gen , Vectores Genéticos , Genotipo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/citología , Cariotipificación , Linfocitos/citología , Masculino , Microscopía Confocal , Mutación , Linaje , Fenotipo , ARN Interferente Pequeño/metabolismo , Piel/patología
2.
Am J Hum Genet ; 92(6): 946-54, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23664116

RESUMEN

Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA.


Asunto(s)
Proteínas Portadoras/genética , Atrofia Muscular Espinal/genética , Mutación Missense , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/metabolismo , Preescolar , Secuencia Conservada , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Dominantes , Estudios de Asociación Genética , Ligamiento Genético , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Células HeLa , Humanos , Masculino , Proteínas Asociadas a Microtúbulos , Atrofia Muscular Espinal/congénito , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Linaje , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
3.
Hum Mol Genet ; 22(7): 1328-47, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23263861

RESUMEN

F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Proteínas de Microfilamentos/fisiología , Placa Motora/fisiopatología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/patología , Actinas/metabolismo , Animales , Potenciales Evocados Motores , Expresión Génica , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Placa Motora/metabolismo , Placa Motora/patología , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatología , Fenotipo , Propiocepción , Transporte de Proteínas , Receptores Colinérgicos/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...