Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS Biol ; 20(6): e3001674, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35709146

RESUMEN

Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperate-zone lens. Integrating tropical research into biology education is urgently needed to tackle these issues.


Asunto(s)
Biodiversidad , Cambio Climático , Biología , Clima Tropical
3.
Science ; 361(6405): 920-923, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30166491

RESUMEN

Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.


Asunto(s)
Biodiversidad , Cambio Climático
4.
Ecol Appl ; 25(7): 1984-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26591463

RESUMEN

Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features.


Asunto(s)
Cambio Climático , Bosques , Fenómenos Geológicos , Pinus/fisiología , Quercus/fisiología , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Agricultura Forestal , Suelo , Especificidad de la Especie , Temperatura , Factores de Tiempo , Wisconsin
5.
Tree Physiol ; 34(7): 766-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24990865

RESUMEN

The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Metrosideros polymorpha Gaudich. var. polymorpha in three habitats bracketing the cloud forest's upper limit in Hawai'i to understand the role of water relations in determining ecotone position. The subalpine shrubland site, located 100 m above the cloud forest boundary, had the highest vapor pressure deficit, the least amount of rainfall and the highest levels of nighttime transpiration (EN) of all three sites. In the shrubland site, on average, 29% of daily whole-tree transpiration occurred at night, while on the driest day of the study 50% of total daily transpiration occurred at night. While EN occurred in the cloud forest habitat, the proportion of total daily transpiration that occurred at night was much lower (4%). The average leaf water potential (Ψleaf) was above the water potential at the turgor loss point (ΨTLP) on both sides of the ecotone due to strong stomatal regulation. While stomatal closure maintained a high Ψleaf, the minimum leaf water potential (Ψleafmin) was close to ΨTLP, indicating that drier conditions may cause drought stress in these habitats and may be an important driver of current landscape patterns in stand density.


Asunto(s)
Bosques , Microclima , Transpiración de Plantas , Árboles/fisiología , Agua/metabolismo , Altitud , Sequías , Hawaii
6.
Oecologia ; 175(1): 273-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24477832

RESUMEN

Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest's upper limit and composition in Hawai'i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest's upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture's overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.


Asunto(s)
Ecosistema , El Niño Oscilación del Sur , Microclima , Árboles/fisiología , Sequías , Hawaii , Humedad , Modelos Teóricos , Lluvia , Temperatura
7.
New Phytol ; 193(4): 1088-1097, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22188609

RESUMEN

It has been proposed that long-distance dispersal of mosses to the Hawaiian Islands rarely occurs and that the Hawaiian population of the allopolyploid peat moss Sphagnum palustre probably resulted from a single dispersal event. Here, we used microsatellites to investigate whether the Hawaiian population of the dioicous S. palustre had a single founder and to compare its genetic diversity to that found in populations of S. palustre in other regions. The genetic diversity of the Hawaiian population is comparable to that of larger population systems. Several lines of evidence, including a lack of sporophytes and an apparently restricted natural distribution, suggest that sexual reproduction is absent in the Hawaiian plants. In addition, all samples of Hawaiian S. palustre share a genetic trait rare in other populations. Time to most recent ancestor (TMRCA) analysis indicates that the Hawaiian population was probably founded 49-51 kyr ago. It appears that all Hawaiian plants of S. palustre descend from a single founder via vegetative propagation. The long-term viability of this clonal population coupled with the development of significant genetic diversity suggests that vegetative propagation in a moss does not necessarily preclude evolutionary success in the long term.


Asunto(s)
Variación Genética , Repeticiones de Microsatélite , Sphagnopsida/genética , Efecto Fundador , Geografía , Haplotipos , Hawaii , Reproducción Asexuada , Sphagnopsida/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...