Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Front Immunol ; 15: 1372693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605952

RESUMEN

Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.


Asunto(s)
Candidiasis , Interleucina-17 , Humanos , Inhibidores de Interleucina , Estudios Prospectivos , Candidiasis/tratamiento farmacológico , Candidiasis/epidemiología , Interleucina-23
2.
Mycology ; 15(1): 30-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558839

RESUMEN

The application of interleukin-17 (IL-17) inhibitors, including secukinumab, ixekizumab, brodalumab, and bimekizumab, are associated with elevated risk of candidiasis. These medications interfere with the IL-17 pathway, which is essential for maintaining mucosal barriers and coordinating the immune response against Candida species. The observational data and clinical trials demonstrate the increased incidence of candidiasis in individuals treated with IL-17 inhibitors. Brodalumab and bimekizumab pose a greater risk than secukinumab in eliciting candidiasis, whereas the data regarding ixekizumab are equivocal. Higher doses and prolonged treatment duration of IL-17 inhibitors increase the risk of candidiasis by compromising the immune response against Candida species. Prior to prescribing IL-17 inhibitors, healthcare professionals should comprehensively evaluate patients' medical histories and assess their risk factors. Patients should be educated on the signs and symptoms of candidiasis to facilitate early detection and intervention. Future research should focus on identifying the risk factors associated with candidiasis in patients receiving IL-17 inhibitors. Prospective studies and long-term surveillance are required to explore the impact of specific inhibitors on the incidence and severity of candidiasis and to evaluate the effectiveness of combination therapies, such as concurrent use of IL-17 inhibitors and prophylactic antifungal agents.

3.
World J Gastrointest Surg ; 16(3): 932-943, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38577076

RESUMEN

BACKGROUND: Genetic factors of chronic intestinal ulcers are increasingly garnering attention. We present a case of chronic intestinal ulcers and bleeding associated with mutations of the activin A receptor type II-like 1 (ACVRL1) and phospholipase A2 group IVA (PLA2G4A) genes and review the available relevant literature. CASE SUMMARY: A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain, diarrhea, and dark stools. At the onset 6 years ago, the patient had received treatment at a local hospital for abdominal pain persisting for 7 d, under the diagnosis of diffuse peritonitis, acute gangrenous appendicitis with perforation, adhesive intestinal obstruction, and pelvic abscess. The surgical treatment included exploratory laparotomy, appendectomy, intestinal adhesiolysis, and pelvic abscess removal. The patient's condition improved and he was discharged. However, the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge. On the basis of these features and results of subsequent colonoscopy, the clinical diagnosis was established as inflammatory bowel disease (IBD). Accordingly, aminosalicylic acid, immunotherapy, and related symptomatic treatment were administered, but the symptoms of the patient did not improve significantly. Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes. ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation, respectively. This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes. Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms. CONCLUSION: Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD. Orally administered Kangfuxin liquid may have therapeutic potential.

4.
Cancer Res ; 84(10): 1680-1698, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38501978

RESUMEN

Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE: The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.


Asunto(s)
Anticuerpos Biespecíficos , Antígeno B7-H1 , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
5.
Sci Rep ; 14(1): 6102, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480729

RESUMEN

The mechanisms underlying the organization and evolution of the telencephalic pallium are not yet clear.. To address this issue, we first performed comparative analysis of genes critical for the development of the pallium (Emx1/2 and Pax6) and subpallium (Dlx2 and Nkx1/2) among 500 vertebrate species. We found that these genes have no obvious variations in chromosomal duplication/loss, gene locus synteny or Darwinian selection. However, there is an additional fragment of approximately 20 amino acids in mammalian Emx1 and a poly-(Ala)6-7 in Emx2. Lentiviruses expressing mouse or chick Emx2 (m-Emx2 or c-Emx2 Lv) were injected into the ventricle of the chick telencephalon at embryonic Day 3 (E3), and the embryos were allowed to develop to E12-14 or to posthatchling. After transfection with m-Emx2 Lv, the cells expressing Reelin, Vimentin or GABA increased, and neurogenesis of calbindin cells changed towards the mammalian inside-out pattern in the dorsal pallium and mesopallium. In addition, a behavior test for posthatched chicks indicated that the passive avoidance ratio increased significantly. The study suggests that the acquisition of an additional fragment in mammalian Emx2 is associated with the organization and evolution of the mammalian pallium.


Asunto(s)
Corteza Cerebral , Telencéfalo , Ratones , Animales , Telencéfalo/metabolismo , Corteza Cerebral/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Regulación del Desarrollo de la Expresión Génica
6.
PLoS One ; 19(3): e0299775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517932

RESUMEN

Using creativity to promote recreational services is crucial. Accordingly, creative linguistic landscapes (CLLs) are being used to improve visitors' experiences in some recreational zones. However, relevant research is still in its early stages. Therefore, this study was conducted. It summarized the leisure function categories and function evaluation indicators of CLLs in recreational zones respectively based on image materials and related online reviews. The leisure function outcomes of all CLL types were ranked using the fuzzy PROMETHEE method; based on this ranking, a CLL configuration optimization mode was suggested. The findings reveal the following. (1) Currently, there are mainly nine leisure function types of CLL in practice, although the type structure is severely imbalanced; there are 12 primary corresponding function evaluation indicators, although each of them draws significantly different attention. (2) There are notable variations among the outcomes of different types of functions of CLL: mood adjustment is the most advantageous function of CLL for leisure services, followed by emotional guidance and cognitive building functions; (3) According to the study findings, in the configuration of CLL, which aims at leisure function optimization, the "function focusing and coordinating mode (the superior functions of CLL are focused on and its various functions are coordinated)" should be adopted. The results provide meaningful lessons for the establishment of rational and effective CLL in recreational zones.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Actividades Recreativas/psicología , Creatividad , Cognición , Lingüística
7.
PLoS One ; 19(2): e0297522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394092

RESUMEN

Although efficiency analysis could reflect the state and quality of tourism's economic development, no research has been conducted investigating the spatiotemporal evolution and mechanisms of county-level tourism efficiency. We quantified tourism efficiency and its decomposition in 63 counties of Zhejiang, employing the bootstrap data envelopment analysis (DEA), hot spot analysis, and quantile regression to explore the spatiotemporal evolution and influencing factors of tourism efficiency, and examine its driving and constraining mechanisms. The results uncovered obvious upward trends in the tourism efficiency of Zhejiang's counties, with the mean value increasing from 0.285 to 0.688. Compared with scale efficiency, the influence of technological efficiency on the growth of comprehensive efficiency increased remarkably. Significant differences were evident in the spatial distributions of the identified hot and cold spots of comprehensive efficiency, which were respectively distributed in northern and southern Zhejiang. The distributions of decomposition efficiency were found to be spatially dependent. The driving mechanism of tourism efficiency involve two driving influences and two constraining influences, including economy and resource driving, market and traffic driving, industry and traffic constraining, and market and industry constraining. The findings of this study contribute to understanding of tourism efficiency growth in regional destinations and provide insights for strategic policymaking in various counties of Zhejiang.


Asunto(s)
Dermatitis , Turismo , Humanos , China , Análisis de Datos , Desarrollo Económico
8.
Clin Transl Med ; 13(8): e1359, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537731

RESUMEN

BACKGROUND: N6 -methyladenosine (m6A) is of great importance in renal physiology and disease progression, but its function and mechanism in renal fibrosis remain to be comprehensively and extensively explored. Hence, this study will explore the function and potential mechanism of critical regulator-mediated m6A modification during renal fibrosis and thereby explore promising anti-renal fibrosis agents. METHODS: Renal tissues from humans and mice as well as HK-2 cells were used as research subjects. The profiles of m6A modification and regulators in renal fibrosis were analysed at the protein and RNA levels using Western blotting, quantitative real-time polymerase chain reaction and other methods. Methylation RNA immunoprecipitation sequencing and RNA sequencing coupled with methyltransferase-like 3 (METTL3) conditional knockout were used to explore the function of METTL3 and potential targets. Gene silencing and overexpression combined with RNA immunoprecipitation were performed to investigate the underlying mechanism by which METTL3 regulates the Ena/VASP-like (EVL) m6A modification that promotes renal fibrosis. Molecular docking and virtual screening with in vitro and in vivo experiments were applied to screen promising traditional Chinese medicine (TCM) monomers and explore their mechanism of regulating the METTL3/EVL m6A axis and anti-renal fibrosis. RESULTS: METTL3 and m6A modifications were hyperactivated in both the tubular region of fibrotic kidneys and HK-2 cells. Upregulated METTL3 enhanced the m6A modification of EVL mRNA to improve its stability and expression in an insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2)-dependent manner. Highly expressed EVL binding to Smad7 abrogated the Smad7-induced suppression of transforming growth factor-ß (TGF-ß1)/Smad3 signal transduction, which conversely facilitated renal fibrosis progression. Molecular docking and virtual screening based on the structure of METTL3 identified a TCM monomer named isoforsythiaside, which inhibited METTL3 activity together with the METTL3/EVL m6A axis to exert anti-renal fibrosis effects. CONCLUSIONS: Collectively, the overactivated METTL3/EVL m6A axis is a potential target for renal fibrosis therapy, and the pharmacological inhibition of METTL3 activity by isoforsythiaside suggests that it is a promising anti-renal fibrosis agent.


Asunto(s)
Metiltransferasas , ARN , Animales , Humanos , Ratones , Fibrosis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , ARN Mensajero/genética , Proteínas de Unión al ARN
9.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1815-1823, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37282956

RESUMEN

It is generally believed that high-quality Bupleurum scorzonerifolium roots possess specific morphological characteristics, being red, robust, and long with strong odor. However, the scientific connotation of these characteristics has not been elucidated. According to the theory of "quality evaluation through morphological identification", we studied the correlations between appearance traits(the RGB value of root surface, root length, root diameter, dry weight, and ratio of phloem to xylem) and content of main chemical components(volatile oils, total saponins, total flavonoids, total polysaccharides, and seven saikosaponins) of B. scorzonerifolium roots. Epson Scanner and ImageJ were used to scan the root samples and measure the appearance traits. Ultraviolet spectrophotometry and HPLC were employed to determine the content of chemical components. The correlation, regression, and cluster analyses were performed to study the correlations between the appearance traits and the content of chemical components. The results showed that the content of volatile oils and saikosaponins were significantly correlated with RGB value, root length, and root diameter, indicating that within a certain range, the roots being redder, longer, and thicker had higher content of volatile oils and saikosaponins. According to the appearance traits and chemical component content, the 14 samples from different producing areas were classified into four grades, and the differences in morphological traits and chemical component content were consistent among different grades. The findings in this study demonstrate that appearance traits(RGB value, root length, and root diameter) can be used to evaluate the quality of B. scorzonerifolium roots. Meanwhile, this study lays a foundation for establishing an objective quality evaluation method for B. scorzonerifolium roots.


Asunto(s)
Bupleurum , Aceites Volátiles , Ácido Oleanólico , Saponinas , Bupleurum/química , Saponinas/análisis , Ácido Oleanólico/análisis , Aceites Volátiles/análisis , Raíces de Plantas/química
10.
11.
Free Radic Biol Med ; 203: 24-33, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37023934

RESUMEN

Mild inhibition of mitochondrial function leads to longevity. Genetic disruption of mitochondrial respiratory components either by mutation or RNAi greatly extends the lifespan in yeast, worms, and drosophila. This has given rise to the idea that pharmacologically inhibiting mitochondrial function would be a workable strategy for postponing aging. Toward this end, we used a transgenic worm strain that expresses the firefly luciferase enzyme widely to evaluate compounds by tracking real-time ATP levels. We identified chrysin and apigenin, which reduced ATP production and increased the lifespan of worms. Mechanistically, we discovered that chrysin and apigenin transiently inhibit mitochondrial respiration and induce an early ROS, and the lifespan-extending effect is dependent on transient ROS formation. We also show that AAK-2/AMPK, DAF-16/FOXO, and SKN-1/NRF-2 are required for chrysin or apigenin-mediated lifespan extension. Temporary increases in ROS levels trigger an adaptive response in a mitohormetic way, thereby increasing oxidative stress capacity and cellular metabolic adaptation, finally leading to longevity. Thus, chrysin and apigenin represent a class of compounds isolated from natural products that delay senescence and improve age-related diseases by inhibiting mitochondrial function and shed new light on the function of additional plant-derived polyphenols in enhancing health and delaying aging. Collectively, this work provides an avenue for pharmacological inhibition of mitochondrial function and the mechanism underlining their lifespan-extending properties.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Longevidad/genética , Apigenina/farmacología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Factores de Transcripción Forkhead/genética
12.
Foods ; 12(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37048296

RESUMEN

To improve the mechanical properties and confer antimicrobial activity, transglutaminase (TGase) was used as a cross-linking agent and lysozyme (LYS) was incorporated as an antimicrobial agent to prepare novel active tilapia collagen (TC) films. While the difference in visual appearance was not obvious, the LYS incorporation increased the opacity of TC films. The water vapor permeability of all TGase cross-linked TC films was significantly (p < 0.05) lower than that of the control film (prepared without TGase and LYS). In addition, while the tensile strength and Young's modulus of all TGase cross-linked TC films were significantly (p < 0.05) higher than those of the control film, elongation at break of all TGase cross-linked TC films was significantly (p < 0.05) lower than that of the control film. LYS incorporated TC films showed antimicrobial activity against E. coli, Staphylococcus aureus, Enterococcus faecium, Bacillus subtilis and Pseudomonas fluorescens. Collectively, TC films with improved physiochemical properties and antimicrobial activity have a good potential to serve as active food packaging materials.

13.
Front Plant Sci ; 14: 1108588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844065

RESUMEN

Leaf senescence in tobacco is closely related to leaf maturation and secondary metabolites. Bcl-2-associated athanogene (BAG) family members are highly conserved proteins and play key roles in senescence, growth and development, and resistance to biotic and abiotic stresses. Herein, the BAG family of tobacco was identified and characterized. In total, 19 tobacco BAG protein candidate genes were identified and divided into two classes, class I comprising NtBAG1a-e, NtBAG3a-b, and NtBAG4a-c and class II including NtBAG5a-e, NtBAG6a-b, and NtBAG7. Genes in the same subfamily or branch of the phylogenetic tree exhibited similarities in gene structure and the cis-element on promoters. RNA-seq and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that the expression of NtBAG5c-f and NtBAG6a-b was upregulated in senescent leaves, implying that they play a role in regulating leaf senescence. NtBAG5c was localized in the nucleus and cell wall as a homology of leaf senescence related gene AtBAG5. Further, the interaction of NtBAG5c with heat-shock protein 70 (HSP70) and sHSP20 was demonstrated using yeast two-hybrid experiment. Virus-induced gene silencing indicated that NtBAG5c reduced the lignin content and increased superoxide dismutase (SOD) activity and hydrogen peroxide (H2O2) accumulation. In NtBAG5c-silenced plants, the expression of multiple senescence-related genes cysteine proteinase (NtCP1), SENESCENCE 4 (SEN4) and SENESCENCE-ASSOCIATED GENE 12 (SAG12) was downregulated. In conclusion, tobacco BAG protein candidate genes were identified and characterized for the first time.

14.
Artículo en Inglés | MEDLINE | ID: mdl-36673828

RESUMEN

In the context of ecological priority and green development strategy, accelerating the upgrading of tourism structure and promoting the development of ecotourism is an important guarantee to achieve green and low-carbon economic growth and high-quality development. On the basis of constructing comprehensive evaluation indicators of tourism development (TD) and green development efficiency (GDE), this study analyzed the impulse response relationship between TD and GDE and the impact effect of TD on GDE in the Yangtze River Delta region from 2000-2018. Findings showed that: (1) During the study period, TD generally exhibited a W-shaped fluctuating upward trend and GDE showed a staggered evolution of upward and downward fluctuations, while both regional gaps of TD and GDE continued to decrease. (2) Most cities had made a leap from low to medium, high, and higher levels of tourism development, with tourism development levels decreasing along the Yangtze River basin to the north and south of the delta. The overall green development efficiency was relatively low, showing a spatial pattern of high value in the southern delta and low value in the northwest delta. (3) There was a one-way Granger causality of TD on GDE, and the impact of TD on GDE showed a significant positive cumulative effect. (4) TD exhibited a significant inverted U-shaped impact on GDE. The economic development level and government intervention had a significant positive impact on GDE. The proportion of secondary industry, energy consumption intensity, and foreign direct investment had a significant negative driving effect on GDE. While the impact of environmental regulation on GDE was insignificant positive. This study has great practical significance to alleviate the problems of urban resources and environment, and to realize a green economy and high-quality life.


Asunto(s)
Conducción de Automóvil , Desarrollo Sostenible , Turismo , Desarrollo Económico , Inversiones en Salud , Ciudades , China , Eficiencia
15.
Plant Cell Rep ; 42(1): 17-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36224499

RESUMEN

KEY MESSAGE: Rice glycosyltransferase gene UGT2 was identified to play a crucial role in salt tolerance. The transcription factor OsbZIP23 was demonstrated to regulate the UGT2 expression under stress conditions. UDP-glycosyltransferases (UGTs) play key roles in modulating plant responses to environmental challenges. In this study, we characterized a novel glycosyltransferase, UGT2, which plays an important role in salt stress responses in rice (Oryza sativa L). We found that seedlings overexpressing UGT2 exhibited better growth than wild type in shoot and root under hydroponic culture with salt stress treatments, while ugt2ko mutant lines suffered much more growth inhibition. When the soil-grown UGT2 transgenic plants were subjected to salt stress, we also found that ugt2ko mutant lines were severely withered and most of them died, while the overexpression lines grew well and had higher survival rate. Compared with wild-type plants, UGT2 overexpression greatly increased the expression levels of the reactive oxygen species scavenging genes and stress-responsive genes. Furthermore, the upstream regulatory mechanism of the UGT2 gene was identified and we found that a bZIP transcription factor, OsbZIP23, can bind to the UGT2 promoter and enhance the UGT2 transcription levels. This work reveals that OsbZIP23-UGT2 module may play a major role in regulating the salt stress tolerance in rice.


Asunto(s)
Oryza , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tolerancia a la Sal/genética , Oryza/metabolismo , Estrés Fisiológico/genética , Estrés Salino/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Br J Pharmacol ; 180(1): 5-24, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36196023

RESUMEN

Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.


Asunto(s)
Lesión Renal Aguda , Carcinoma de Células Renales , Neoplasias Renales , Humanos , ARN , ARN Mensajero
17.
Behav Sci (Basel) ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38247678

RESUMEN

In order to foster students' development and enhance the training quality within tourism programs at universities, this study aims to investigate the relationships among tourism students' professional identity, academic self-efficacy, learning engagement, and university support. Professional identity refers to learners' recognition and understanding of their study programs and is viewed as a dynamic, progressive process consisting of professional cognition, professional emotion, and professional appraisal. Data were collected from 333 tourism students studying at Chinese universities. They were analyzed through SPSS and SmartPLS. The results revealed that there is no significant correlation between students' professional cognition and learning engagement. However, students' professional emotions and professional appraisals positively influence learning engagement. Moreover, all three dimensions of professional identity exhibit positive effects on students' academic self-efficacy. Additionally, students' academic self-efficacy demonstrates a positive impact on learning engagement, and university support is associated with increased learning engagement and academic self-efficacy. This study contributes to a comprehensive understanding of the learning experience of tourism students and aims to facilitate the advancement of tourism education through cultivating students' professional identity towards tourism and developing students' career commitment in the tourism industry. Theoretical and practical implications are discussed.

18.
Virulence ; 13(1): 1573-1589, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36120738

RESUMEN

Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosuppressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to systematically analyse the susceptibility profiles of Candida species published in the last ten years (December 2011 to December 2021) from mainland China. The studies were collected from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations in ERG11, ERG3, ERG4, MRR1-2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies' characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identification method, respectively. The current study demonstrates the overall antifungal susceptibility pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be supportive in candidiasis therapy and for the researchers in their future studies.


Asunto(s)
Candida , Candidiasis , Humanos , Anfotericina B , Anidulafungina , Antifúngicos/farmacología , Azoles , Candida albicans , Candida glabrata , Candida parapsilosis , Candida tropicalis , Candidiasis/tratamiento farmacológico , Candidiasis/epidemiología , Candidiasis/microbiología , Equinocandinas , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana
19.
Front Microbiol ; 13: 981181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992679

RESUMEN

Cutaneous candidiasis is one of the most prevalent mycotic infections caused by Candida species. The severity of infection mounts faster when the species shows antifungal resistance. In the current retrospective study, we aimed to analyze the occurrence, causes of cutaneous candidiasis, and antifungal susceptibility pattern of Candida isolates from Skin and Venereal Diseases Prevention and Control Hospital of Shantou, located in eastern Guangdong, China. The laboratory data of all patients (n = 3,113) suffering from various skin and venereal infections during January 2012 to December 2021 was analyzed through Excel and GraphPad prism. Our analysis indicate that cutaneous candidiasis was 22.29% (n = 694), of which 78.53% (n = 554) of patients were males and 21.47% (n = 149) of patients were females. The median age of patients with cutaneous candidiasis was 38-year [interquartile range (30-48)]. Most cases occurred in the adult age group (19-50 years). Regarding the species type, the Candida albicans were prominently detected (n = 664, 95.68%), while non-C. albicans were found only in 30 (4.32%) patients, which were C. glabrata (n = 18), C. krusei (n = 8), C. tropicalis (n = 3), and C. parapsilosis (n = 1). The C. albicans susceptibility rate for terbinafine, miconazole, voriconazole, itraconazole, fluconazole, ketoconazole, nystatin, 5-flucytosine and amphotericin B were 10.83, 29.32, 59.39, 78.53, 85.28, 87.75, 99.59, 99.41, and 100%, respectively. Finally, all C. glabrata isolates were found susceptible to all tested azole drugs with exception to miconazole against which 8.33% of isolates showed resistance. The findings of this study will help healthcare officials to establish better antifungal stewardship in the region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...