Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 922: 171310, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423312

RESUMEN

In the Karst Critical Zone (KCZ), mining and urbanization activities produce multiple pollutants, posing a threat to the vital groundwater and surface water resources essential for drinking and irrigation. Despite their importance, the interactions between these pollutants in the intricate hydrology and land use of the KCZ remain poorly understood. In this study, we unraveled the transformation mechanisms and sources of nitrogen, sulfate, and carbon using multiple isotopes and the MixSIAR model, following hydrology and surface analyses conducted in spatial modelling with ArcGIS. Our results revealed frequent exchange between groundwater and surface water, as evidenced by the analysis of δD-H2O and δ18O-H2O. Nitrification predominantly occurred in surface water, although denitrification also made a minor contribution. Inorganic nitrogen in both groundwater and surface water primarily originated from soil nitrogen (48 % and 49 %, respectively). Sewage and manure were secondary sources of inorganic nitrogen in surface water, accounting for 41 % in urban and 38 % in mining areas. Notably, inorganic sulfur oxidation displayed significant spatial disparities between urban and mining areas, rendering groundwater more susceptible to sulfur pollution compared to surface water. The frequent interchange between groundwater and surface water posed a higher pollution risk to groundwater. Furthermore, the primary sources of CO2 and HCO3- in both groundwater and surface water were water­carbonate reactions and soil respiration. Sulfide oxidation was found to enhance carbonate dissolution, leading to increased CO2 release from carbonate dissolution in the KCZ. These findings enhance our understanding of the transformation mechanisms and interactions of nitrogen, sulfur, and carbon in groundwater and surface water. This knowledge is invaluable for accurately controlling and treating water pollution in the KCZ.

2.
Sci Data ; 11(1): 17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167392

RESUMEN

Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets describing these drivers were combined with a process model for soil P dynamics to reconstruct the past and current distribution of P in cropland and grassland soils. The objective of the present update, called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we estimate a global averaged inorganic labile P of 187 kgP ha-1 for cropland and 91 kgP ha-1 for grassland in 2018 for the top 0-0.3 m soil layer, but these values are sensitive to the mineralization rates chosen for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the agricultural soil P maps more transparent and reproducible than previous estimates, and increases the confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for further improvement.

3.
Plant Physiol Biochem ; 206: 108223, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043252

RESUMEN

Freeze-thaw cycles (FTCs) limit the distribution and survival of temperate tree species. Tree species with different wood types coexist in temperate forests and are subjected to the same FTCs. It is essential to understand how these trees differentially cope with xylem hydraulic failure induced by FTCs in the field. The branch hydraulic traits and nonstructural carbohydrate concentration of six coexisting tree species in a temperate forest were measured from mid-winter to early spring when the FTCs occurred from January to April. The percentage loss of hydraulic conductivity (PLC) was lower, and the water potential inducing a 50% loss of hydraulic conductivity (P50) was more negative in tracheid trees than in ring- and diffuse-porous trees, suggesting tracheid trees with narrow tracheid diameters showed less vulnerable to embolism and provided a lower degree of hydraulic failure during FTCs (stronger resistance). Ring-porous trees always showed lower hydraulic conductivity and higher PLC and P50, and these traits did not change during FTCs, suggesting that they might lose the hydraulic functions in winter and abandon the last year xylem. The P50 in diffuse-porous increased after several FTCs (frost fatigue), but that in tracheid species continued to increase (or even decrease) until the end of FTCs (69 cycles), suggesting that tracheid trees were less sensitive to frost fatigue than diffuse-porous trees. Soluble sugar concentration in deciduous trees negatively correlated with PLC at the end of FTCs, indicating that the effect of soluble sugar on refilling embolism occurred in early spring. While the soluble sugar concentration of deciduous trees decreased, that of two evergreen tracheid trees gradually increased, possibly due to the winter photosynthesis of evergreen leaves. Our results suggest temperate trees adopt different strategies to cope with the same FTCs. These findings enrich the understanding of plant hydraulics and carbon physiology in winter and provide insights into the response of different species coexisting in temperate forests under climate change.


Asunto(s)
Embolia , Árboles , Árboles/fisiología , Bosques , Madera , Xilema/fisiología , Agua , Hojas de la Planta/fisiología , Azúcares
4.
Nat Food ; 4(12): 1031-1032, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053004
5.
Nat Commun ; 14(1): 5629, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699913

RESUMEN

River run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.


Asunto(s)
Cambio Climático , Contaminantes Ambientales , Transporte Biológico , Arrecifes de Coral , Material Particulado
6.
Nat Commun ; 14(1): 2188, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069185

RESUMEN

Quantifying the stomatal responses of plants to global change factors is crucial for modeling terrestrial carbon and water cycles. Here we synthesize worldwide experimental data to show that stomatal conductance (gs) decreases with elevated carbon dioxide (CO2), warming, decreased precipitation, and tropospheric ozone pollution, but increases with increased precipitation and nitrogen (N) deposition. These responses vary with treatment magnitude, plant attributes (ambient gs, vegetation biomes, and plant functional types), and climate. All two-factor combinations (except warming + N deposition) significantly reduce gs, and their individual effects are commonly additive but tend to be antagonistic as the effect sizes increased. We further show that rising CO2 and warming would dominate the future change of plant gs across biomes. The results of our meta-analysis provide a foundation for understanding and predicting plant gs across biomes and guiding manipulative experiment designs in a real world where global change factors do not occur in isolation.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Fotosíntesis/fisiología , Ecosistema , Clima , Plantas , Cambio Climático
7.
Plant Physiol Biochem ; 197: 107658, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37001301

RESUMEN

Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (KmL and KmB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P50B, was more negative than P50L across the year. The values of VS (P50L minus P50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, KmL positively correlated with KmB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers.


Asunto(s)
Picea , Pinus , Tracheophyta , Árboles , Estaciones del Año , Agua , Hojas de la Planta
8.
Sci Total Environ ; 877: 162568, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36889391

RESUMEN

Elucidating the sources of particulate organic matter (POM) is the foundation for understanding their fates and the seasonal variation of their movement from the land-to-ocean aquatic continuum (LOAC). The POM from different sources has different reactivity, which determines their fates. However, the key link between the sources and fates of POM, especially in the complex land use watersheds in bays is still unclear. Stable isotopes and contents of organic carbon and nitrogen were applied to reveal them in a complex land use watershed with different gross domestic production (GDP) in a typical Bay, China. Our results showed that the POMs preserved in suspended particulate organic matter (SPM) were weakly controlled by assimilation and decomposition in the main channels. Source apportionments of SPM in the rural area were controlled by soil (46 % ~ 80 %), especially inert soils eroded from land to water due to precipitation. The contribution of phytoplankton resulted from slower water velocity and longer residence time in the rural area. The soil (47 % ~ 78 %) and manure and sewage (10 % ~ 34 %) were the two major contributors to SOMs in the developed and developing urban areas. The manure and sewage were important sources of active POM in the urbanization of different LUI, which showed discrepancies in the three urban areas (10 % ~ 34 %). Due to soil erosion and the most intensive industry supported by GDP, the soil (45 % ~ 47 %) and industrial wastewater (24 % ~ 43 %) were the two major contributors to SOMs in the industrial urban area. This study demonstrated the close relationship between the sources and fates of POM with complex land use patterns, which could reduce uncertainties in future estimates of the LOAC fluxes and secure ecological and environmental barriers in a bay area.

9.
Glob Chang Biol ; 29(10): 2759-2775, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36799318

RESUMEN

Large across-model spread in simulating land carbon (C) dynamics has been ubiquitously demonstrated in model intercomparison projects (MIPs), and became a major impediment in advancing climate change prediction. Thus, it is imperative to identify underlying sources of the spread. Here, we used a novel matrix approach to analytically pin down the sources of across-model spread in transient peatland C dynamics in response to a factorial combination of two atmospheric CO2 levels and five temperature levels. We developed a matrix-based MIP by converting the C cycle module of eight land models (i.e., TEM, CENTURY4, DALEC2, TECO, FBDC, CASA, CLM4.5 and ORCHIDEE) into eight matrix models. While the model average of ecosystem C storage was comparable to the measurement, the simulation differed largely among models, mainly due to inter-model difference in baseline C residence time. Models generally overestimated net ecosystem production (NEP), with a large spread that was mainly attributed to inter-model difference in environmental scalar. Based on the sources of spreads identified, we sequentially standardized model parameters to shrink simulated ecosystem C storage and NEP to almost none. Models generally captured the observed negative response of NEP to warming, but differed largely in the magnitude of response, due to differences in baseline C residence time and temperature sensitivity of decomposition. While there was a lack of response of NEP to elevated CO2 (eCO2 ) concentrations in the measurements, simulated NEP responded positively to eCO2 concentrations in most models, due to the positive responses of simulated net primary production. Our study used one case study in Minnesota peatland to demonstrate that the sources of across-model spreads in simulating transient C dynamics can be precisely traced to model structures and parameters, regardless of their complexity, given the protocol that all the matrix models were driven by the same gross primary production and environmental variables.


Asunto(s)
Carbono , Ecosistema , Dióxido de Carbono , Cambio Climático , Simulación por Computador
10.
New Phytol ; 237(6): 2039-2053, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513603

RESUMEN

Introducing N2 -fixing tree species into Eucalyptus plantations could replace nitrogen (N) fertilization to maintain high levels of N consumption and productivity. However, N enrichment may exacerbate phosphorus (P) limitation as Eucalyptus robusta Smith is extensively planted in P-poor tropical and subtropical soils. We conducted a field experiment in a pure plantation of Eucalyptus urophylla × grandis to investigate the impacts of N fertilization and introduced an N2 -fixing tree of Dalbergia odorifera T. Chen on soil P transformation. Nitrogen fertilization significantly enhanced soil occluded P pool and reduced the other P pools due to acidification-induced pH-sensitive geochemical processes, lowering Eucalyptus leaf P concentration with higher N : P ratio. By contrast, introduced N2 -fixing tree species did not change soil pH, labile inorganic P pool, and Eucalyptus leaf N : P ratio, even enhanced organic P pools and reduced occluded P pool probably due to altering microbial community composition particularly stimulating arbuscular mycorrhiza fungal abundance. Our results revealed differential responses and mechanistic controls of soil P transformation in Eucalyptus plantations with N fertilization and introduced N2 -fixing tree species. The dissolution of occluded P pool along with organic P accumulation observed in the mixed plantations may represent a promising future to better manage soil P availability.


Asunto(s)
Eucalyptus , Árboles , Árboles/fisiología , Suelo/química , Eucalyptus/fisiología , Fósforo , Nitrógeno/análisis , Fertilización
11.
Global Biogeochem Cycles ; 36(3): e2021GB007061, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35865755

RESUMEN

The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.

12.
Glob Chang Biol ; 28(18): 5441-5452, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653265

RESUMEN

Foliar stable nitrogen (N) isotopes (δ15 N) generally reflect N availability to plants and have been used to infer about changes thereof. However, previous studies of temporal trends in foliar δ15 N have ignored the influence of confounding factors, leading to uncertainties on its indication to N availability. In this study, we measured foliar δ15 N of 1811 herbarium specimens from 12 plant species collected in southern China forests from 1920 to 2010. We explored how changes in atmospheric CO2 , N deposition and global warming have affected foliar δ15 N and N concentrations ([N]) and identified whether N availability decreased in southern China. Across all species, foliar δ15 N significantly decreased by 0.82‰ over the study period. However, foliar [N] did not decrease significantly, implying N homeostasis in forest trees in the region. The spatiotemporal patterns of foliar δ15 N were explained by mean annual temperature (MAT), atmospheric CO2 ( P CO 2 ), atmospheric N deposition, and foliar [N]. The spatiotemporal trends of foliar [N] were explained by MAT, temperature seasonality, P CO 2 , and N deposition. N deposition within the rates from 5.3 to 12.6 kg N ha-1  year-1 substantially contributed to the temporal decline in foliar δ15 N. The decline in foliar δ15 N was not accompanied by changes in foliar [N] and therefore does not necessarily reflect a decline in N availability. This is important to understand changes in N availability, which is essential to validate and parameterize biogeochemical cycles of N.


Asunto(s)
Dióxido de Carbono , Hojas de la Planta , China , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Hojas de la Planta/química , Plantas , Árboles
13.
Tree Physiol ; 42(5): 1002-1015, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34875097

RESUMEN

Rising atmospheric CO2 concentration ([CO2]) and nitrogen (N) deposition are changing plant growth, physiological characteristics and chemical compositions; however, few studies have explored such impacts in a heavy metal-contaminated environment. In this study, we conducted an open-top chamber experiment to explore the impacts of 2 years of elevated atmospheric [CO2] and N addition on the growth, physiological characteristics and chemical compositions of five subtropical tree species in a cadmium (Cd)-contaminated environment. Results showed that N addition significantly increased concentration of leaf N and protein in five tree species and also decreased payback time (PBT) and leaf carbon:nitrogen ratios and increased tree relative height growth rate (RGR-H) and basal diameter growth rate (RGR-B) in Liquidambar formosana Hance and Syzygium hainanense Chang et Miau. Elevated [CO2] increased leaf maximum photosynthetic rate (Amax) and concentration of total non-structural carbohydrates and shortened PBT to offset the negative effect of Cd contamination on RGR-B in Acacia auriculiformis A. Cunn. ex Benth. The combined effects of elevated [CO2] and N addition did not exceed their separate effects on RGR-H and RGR-B in Castanopsis hystrix Hook. f. & Thomson ex A. DC. and Cinnamomum camphora (L.) presl. The addition of N significantly increased the concentration of leaf Cd by 162.1% and 338.0%, and plant Cd bio-concentration factor by 464% and 861% in C. hystrix and C. camphora, respectively, compared with only Cd addition. Among the five tree species, the decrease in PBT and the increase in Amax, RGR-B and concentrations of leaf protein in response to N and Cd addition under elevated [CO2] were on average 86.7% higher in A. auriculiformis than other species, suggesting that the mitigation of the negative effects of Cd pollution by elevated [CO2] and N addition among five species was species-specific. Overall, we concluded that N addition and elevated [CO2] reduced Cd toxicity and increased the growth rate in A. auriculiformis, S. hainanense and L. formosana, while it maintained the growth rate in C. hystrix and C. camphora by differently increasing photosynthetic rate, altering the leaf chemical compositions and shortening PBT.


Asunto(s)
Nitrógeno , Árboles , Cadmio/metabolismo , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Suelo/química , Árboles/fisiología
14.
Ecol Process ; 10(1): 61, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540522

RESUMEN

BACKGROUND: Countries have long been making efforts by reducing greenhouse-gas emissions to mitigate climate change. In the agreements of the United Nations Framework Convention on Climate Change, involved countries have committed to reduction targets. However, carbon (C) sink and its involving processes by natural ecosystems remain difficult to quantify. METHODS: Using a transient traceability framework, we estimated country-level land C sink and its causing components by 2050 simulated by 12 Earth System Models involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP8.5. RESULTS: The top 20 countries with highest C sink have the potential to sequester 62 Pg C in total, among which, Russia, Canada, USA, China, and Brazil sequester the most. This C sink consists of four components: production-driven change, turnover-driven change, change in instantaneous C storage potential, and interaction between production-driven change and turnover-driven change. The four components account for 49.5%, 28.1%, 14.5%, and 7.9% of the land C sink, respectively. CONCLUSION: The model-based estimates highlight that land C sink potentially offsets a substantial proportion of greenhouse-gas emissions, especially for countries where net primary production (NPP) likely increases substantially and inherent residence time elongates.

15.
Sci Total Environ ; 798: 149211, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375235

RESUMEN

Climate warming has been proposed to increase primary production of natural grasslands in cold regions. However, how climate warming affects the production of artificial pastures in cold regions remains unknown. To address this question, we used open-top chambers to simulate warming in a major artificial pasture (forage oat) on the cold Tibetan Plateau for three consecutive years. Surprisingly, climate warming decreased aboveground and belowground biomass production by 23.1%-44.8% and 35.0%-46.5%, respectively, without a significant impact on their ratio. The adverse effects on biomass production could be attributed to the adverse effects of high-temperatures on leaf photosynthesis through increases in water vapor pressure deficit (by 0.05-0.10 kPa), damages to the leaf oxidant system, as indicated by a 46.6% increase in leaf malondialdehyde content, as well as reductions in growth duration (by 4.7-6.7 days). The adverse effects were also related to exacerbated phosphorus limitation, as indicated by decreases in soil available phosphorus and plant phosphorus concentrations by 31.9%-40.7% and 14.3%-49.4%, respectively, and increases in the plant nitrogen: phosphorus ratio by 19.2%-108.3%. The decrease in soil available phosphorus concentration could be attributed to reductions in soil phosphatase activities (by 9.6%-18.5%). The findings of this study suggest an urgent need to advance agronomic techniques and cultivate more resilient forage genotypes to meet the increasing demand of forage for feeding livestock and to reduce grazing damage to natural grasslands on the warming-sensitive Tibetan Plateau.


Asunto(s)
Plantas , Suelo , Biomasa , Pradera , Fotosíntesis , Tibet
16.
Glob Chang Biol ; 27(20): 5225-5237, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260799

RESUMEN

Interannual variability in precipitation has increased globally as climate warming intensifies. The increased variability impacts both terrestrial plant production and carbon (C) sequestration. However, mechanisms driving these changes are largely unknown. Here, we examined mechanisms underlying the response of aboveground net primary production (ANPP) to interannual precipitation variability in global drylands with mean annual precipitation (MAP) <500 mm year-1 , using a combined approach of data synthesis and process-based modeling. We found a hump-shaped response of ANPP to precipitation variability along the MAP gradient. The response was positive when MAP < ~300 mm year-1 and negative when MAP was higher than this threshold, with a positive peak at 140 mm year-1 . Transpiration and subsoil water content mirrored the response of ANPP to precipitation variability; evaporation responded negatively and water loss through runoff and drainage responded positively to precipitation variability. Mean annual temperature, soil type, and plant physiological traits all altered the magnitude but not the pattern of the response of ANPP to precipitation variability along the MAP gradient. By extrapolating to global drylands (<500 mm year-1  MAP), we estimated that ANPP would increase by 15.2 ± 6.0 Tg C year-1 in arid and hyper-arid lands and decrease by 2.1 ± 0.5 Tg C year-1 in dry sub-humid lands under future changes in interannual precipitation variability. Thus, increases in precipitation variability will enhance primary production in many drylands in the future.


Asunto(s)
Clima , Lluvia , Cambio Climático , Ecosistema , Plantas , Suelo
17.
Ecol Lett ; 24(7): 1420-1431, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33894021

RESUMEN

Phosphorus limitation on terrestrial plant growth is being incorporated into Earth system models. The global pattern of terrestrial phosphorus limitation, however, remains unstudied. Here, we examined the global-scale latitudinal pattern of terrestrial phosphorus limitation by analysing a total of 1068 observations of aboveground plant production response to phosphorus additions at 351 forest, grassland or tundra sites that are distributed globally. The observed phosphorus-addition effect varied greatly (either positive or negative), depending significantly upon fertilisation regime and production measure, but did not change significantly with latitude. In contrast, phosphorus-addition effect standardised by fertilisation regime and production measure was consistently positive and decreased significantly with latitude. Latitudinal gradient in the standardised phosphorus-addition effect was explained by several mechanisms involving substrate age, climate, vegetation type, edaphic properties and biochemical machinery. This study suggests that latitudinal pattern of terrestrial phosphorus limitation is jointly shaped by macro-scale driving forces and the fundamental structure of life.


Asunto(s)
Nitrógeno , Fósforo , Clima , Ecosistema , Bosques , Desarrollo de la Planta
18.
Glob Chang Biol ; 27(12): 2780-2792, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33742519

RESUMEN

China is experiencing a high level of atmospheric nitrogen (N) deposition, which greatly affects the soil carbon (C) dynamics in terrestrial ecosystems. Soil aggregation contributes to the stability of soil structure and to soil C sequestration. Although many studies have reported the effects of N enrichment on bulk soil C dynamics, the underlying mechanisms explaining how soil aggregates respond to N enrichment remain unclear. Here, we used a meta-analysis of data from 76N manipulation experiments in terrestrial ecosystems in China to assess the effects of N enrichment on soil aggregation and its sequestration of C. On average, N enrichment significantly increased the mean weight diameter of soil aggregates by 10%. The proportion of macroaggregates and silt-clay fraction were significantly increased (6%) and decreased (9%) by N enrichment, respectively. A greater response of macroaggregate C (+15%) than of bulk soil C (+5%) to N enrichment was detected across all ecosystems. However, N enrichment had minor effects on microaggregate C and silt-clay C. The magnitude of N enrichment effect on soil aggregation varied with ecosystem type and fertilization regime. Additionally, soil pH declined consistently and was correlated with soil aggregate C. Overall, our meta-analysis suggests that N enrichment promotes particulate organic C accumulation via increasing macroaggregate C and acidifying soils. In contrast, increases in soil aggregation could inhibit microbially mediated breakdown of soil organic matter, causing minimal change in mineral-associated organic C. Our findings highlight that atmospheric N deposition may enhance the formation of soil aggregates and their sequestration of C in terrestrial ecosystems in China.


Asunto(s)
Carbono , Suelo , Carbono/análisis , China , Ecosistema , Nitrógeno/análisis
19.
New Phytol ; 230(5): 1856-1867, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33586131

RESUMEN

Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine-root traits drive many ecosystem processes. We carried out a detailed synthesis of fine-root trait responses to experimental warming by performing a meta-analysis of 964 paired observations from 177 publications. Warming increased fine-root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine-root biomass decreased with greater warming magnitude, especially in short-term experiments. Furthermore, the positive effect of warming on fine-root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine-root length, morphology, mortality, life span and turnover were unresponsive to warming. Our results highlight the significant changes in fine-root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine-root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root-derived carbon inputs into deeper soil horizons and increases in fine-root respiration.


Asunto(s)
Ecosistema , Raíces de Plantas , Biomasa , Calentamiento Global , Nitrógeno/análisis , Raíces de Plantas/química , Suelo
20.
Sci Total Environ ; 757: 143847, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33316534

RESUMEN

The rapid increases in atmospheric nitrogen (N) deposition have greatly affected the carbon (C) cycles of terrestrial ecosystems. Most studies concerning on the effects of N deposition have simulated N deposition by directly applying N to the understory and have therefore not accounted for the possibility of N absorption, retention, and transformation by the canopy. In this study, we compared the effects of understory addition of N (UN), canopy addition of N (CN) at 25 and 50 kg N ha-1 yr-1, and ambient addition of N (CK) on soil carbon-related processes in a subtropical forest. After seven years of addition, the contribution of new C from litter (Fnew) was more than 2× greater with UN treatments than with CN treatments. UN treatments significantly increased the activity of ß-1,4-glucosidase (BG) but reduced the activities of ß-1,4-N-acetylglucosaminidase (NAG), polyphenol oxidase (PPO), and peroxidase (PER). CN treatments, in contrast, did not alter the activities of extracellular enzyme. Compared to CN, UN treatments significantly enhanced soil organic carbon (SOC) and mean weight diameter (MWD, represents soil aggregate stability). Differences in the responses of SOC and MWD to CN and UN treatments were positively correlated with Fnew but negatively correlated with the activities of PPO and PER. The results imply that forest canopy mitigates the effects of atmospheric N inputs on SOC, and that conventional understory N addition might overestimate the positive effects of N deposition on forest soil C-related processes. We suggest that CN rather than UN should be used to simulate the effects of atmospheric N deposition on soil C dynamics in subtropical forests.


Asunto(s)
Nitrógeno , Suelo , Carbono , Ecosistema , Bosques , Nitrógeno/análisis , Microbiología del Suelo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...