Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
HGG Adv ; 5(3): 100299, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659227

RESUMEN

Canonical splice site variants (CSSVs) are often presumed to cause loss-of-function (LoF) and are assigned very strong evidence of pathogenicity (according to American College of Medical Genetics/Association for Molecular Pathology criterion PVS1). The exact nature and predictability of splicing effects of unselected rare CSSVs in blood-expressed genes are poorly understood. We identified 168 rare CSSVs in blood-expressed genes in 112 individuals using genome sequencing, and studied their impact on splicing using RNA sequencing (RNA-seq). There was no evidence of a frameshift, nor of reduced expression consistent with nonsense-mediated decay, for 25.6% of CSSVs: 17.9% had wildtype splicing only and normal junction depths, 3.6% resulted in cryptic splice site usage and in-frame insertions or deletions, 3.6% resulted in full exon skipping (in frame), and 0.6% resulted in full intron inclusion (in frame). Blind to these RNA-seq data, we attempted to predict the precise impact of CSSVs by applying in silico tools and the ClinGen Sequence Variant Interpretation Working Group 2018 guidelines for applying PVS1 criterion. The predicted impact on splicing using (1) SpliceAI, (2) MaxEntScan, and (3) AutoPVS1, an automatic classification tool for PVS1 interpretation of null variants that utilizes Ensembl Variant Effect Predictor and MaxEntScan, was concordant with RNA-seq analyses for 65%, 63%, and 61% of CSSVs, respectively. In summary, approximately one in four rare CSSVs did not show evidence for LoF based on analysis of RNA-seq data. Predictions from in silico methods were often discordant with findings from RNA-seq. More caution may be warranted in applying PVS1-level evidence to CSSVs in the absence of functional data.

2.
Am J Hum Genet ; 110(5): 895-900, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36990084

RESUMEN

Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown. We performed GS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 families where the proband was a child with unexplained medical complexity. RNA-seq was an effective adjunct test when paired with GS. It enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, allowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiagnosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.


Asunto(s)
Familia , Enfermedades Raras , Humanos , Niño , Secuencia de Bases , Análisis de Secuencia de ADN , Secuenciación del Exoma , Enfermedades Raras/genética , Análisis de Secuencia de ARN
3.
NAR Genom Bioinform ; 5(1): lqad003, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36694664

RESUMEN

Differential gene expression analysis using RNA sequencing (RNA-seq) data is a standard approach for making biological discoveries. Ongoing large-scale efforts to process and normalize publicly available gene expression data enable rapid and systematic reanalysis. While several powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources systematically recompute differentially expressed genes (DEGs) generated from individual studies. We developed a robust differential expression analysis pipeline to recompute 3162 human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and 142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to interact with the recomputed DEG lists. DEET, available through CRAN and RShiny, systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF targets to their own gene lists. DEET identifies relevant studies based on shared results with the user's gene lists, aiding in hypothesis generation and data-driven literature review.

4.
Biol Sex Differ ; 13(1): 57, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36221127

RESUMEN

BACKGROUND: The pituitary gland regulates essential physiological processes such as growth, pubertal onset, stress response, metabolism, reproduction, and lactation. While sex biases in these functions and hormone production have been described, the underlying identity, temporal deployment, and cell-type specificity of sex-biased pituitary gene regulatory networks are not fully understood. METHODS: To capture sex differences in pituitary gene regulation dynamics during postnatal development, we performed 3' untranslated region sequencing and small RNA sequencing to ascertain gene and microRNA expression, respectively, across five postnatal ages (postnatal days 12, 22, 27, 32, 37) that span the pubertal transition in female and male C57BL/6J mouse pituitaries (n = 5-6 biological replicates for each sex at each age). RESULTS: We observed over 900 instances of sex-biased gene expression and 17 sex-biased microRNAs, with the majority of sex differences occurring with puberty. Using miRNA-gene target interaction databases, we identified 18 sex-biased genes that were putative targets of 5 sex-biased microRNAs. In addition, by combining our bulk RNA-seq with publicly available male and female mouse pituitary single-nuclei RNA-seq data, we obtained evidence that cell-type proportion sex differences exist prior to puberty and persist post-puberty for three major hormone-producing cell types: somatotropes, lactotropes, and gonadotropes. Finally, we identified sex-biased genes in these three pituitary cell types after accounting for cell-type proportion differences between sexes. CONCLUSION: Our study reveals the identity and postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary. This work also highlights the importance of considering sex biases in cell-type composition when understanding sex differences in the processes regulated by the pituitary gland.


Asunto(s)
MicroARNs , Hipófisis , Regiones no Traducidas 3' , Animales , Femenino , Expresión Génica , Hormonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Hipófisis/metabolismo
5.
Genet Med ; 24(11): 2399-2407, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36083289

RESUMEN

PURPOSE: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1. METHODS: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing. We established lymphoblastoid cells lines derived from an affected individual and her parents and performed RNA sequencing and functional studies. Rabgap1 knockout mice were generated and phenotyped. RESULTS: We report 5 patients presenting with a common constellation of features, including global developmental delay/intellectual disability, microcephaly, bilateral sensorineural hearing loss, and seizures, as well as overlapping dysmorphic features. Neuroimaging revealed common features, including delayed myelination, white matter volume loss, ventriculomegaly, and thinning of the corpus callosum. Functional analysis of patient cells revealed downregulated mTOR signaling and abnormal localization of early endosomes and lysosomes. Rabgap1 knockout mice exhibited several features in common with the patient cohort, including microcephaly, thinning of the corpus callosum, and ventriculomegaly. CONCLUSION: Collectively, our results provide evidence of a novel neurodevelopmental syndrome caused by biallelic loss-of-function variants in RABGAP1.


Asunto(s)
Hidrocefalia , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Animales , Ratones , Femenino , Humanos , Microcefalia/genética , Linaje , Discapacidad Intelectual/genética , Síndrome , Ratones Noqueados , Serina-Treonina Quinasas TOR , Trastornos del Neurodesarrollo/genética
6.
EBioMedicine ; 78: 103982, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35405523

RESUMEN

BACKGROUND: Endothelial cell (EC) activation, endotheliitis, vascular permeability, and thrombosis have been observed in patients with severe coronavirus disease 2019 (COVID-19), indicating that the vasculature is affected during the acute stages of SARS-CoV-2 infection. It remains unknown whether circulating vascular markers are sufficient to predict clinical outcomes, are unique to COVID-19, and if vascular permeability can be therapeutically targeted. METHODS: Prospectively evaluating the prevalence of circulating inflammatory, cardiac, and EC activation markers as well as developing a microRNA atlas in 241 unvaccinated patients with suspected SARS-CoV-2 infection allowed for prognostic value assessment using a Random Forest model machine learning approach. Subsequent ex vivo experiments assessed EC permeability responses to patient plasma and were used to uncover modulated gene regulatory networks from which rational therapeutic design was inferred. FINDINGS: Multiple inflammatory and EC activation biomarkers were associated with mortality in COVID-19 patients and in severity-matched SARS-CoV-2-negative patients, while dysregulation of specific microRNAs at presentation was specific for poor COVID-19-related outcomes and revealed disease-relevant pathways. Integrating the datasets using a machine learning approach further enhanced clinical risk prediction for in-hospital mortality. Exposure of ECs to COVID-19 patient plasma resulted in severity-specific gene expression responses and EC barrier dysfunction, which was ameliorated using angiopoietin-1 mimetic or recombinant Slit2-N. INTERPRETATION: Integration of multi-omics data identified microRNA and vascular biomarkers prognostic of in-hospital mortality in COVID-19 patients and revealed that vascular stabilizing therapies should be explored as a treatment for endothelial dysfunction in COVID-19, and other severe diseases where endothelial dysfunction has a central role in pathogenesis. FUNDING: This work was directly supported by grant funding from the Ted Rogers Center for Heart Research, Toronto, Ontario, Canada and the Peter Munk Cardiac Center, Toronto, Ontario, Canada.


Asunto(s)
COVID-19 , MicroARNs , Enfermedades Vasculares , COVID-19/diagnóstico , COVID-19/mortalidad , Permeabilidad Capilar , Humanos , MicroARNs/metabolismo , SARS-CoV-2 , Enfermedades Vasculares/virología
7.
Sci Adv ; 7(51): eabh0562, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919436

RESUMEN

Alternative polyadenylation of mRNA has important but poorly understood roles in development and cancer. Activating mutations in the Ras oncogene are common drivers of many human cancers. From a screen for enhancers of activated Ras (let-60) in Caenorhabditis elegans, we identified cfim-1, a subunit of the alternative polyadenylation machinery. Ablation of cfim-1 increased penetrance of the multivulva phenotype in let-60/Ras gain-of-function (gf) mutants. Depletion of the human cfim-1 ortholog CFIm25/NUDT21 in cancer cells with KRAS mutations increased their migration and stimulated an epithelial-to-mesenchymal transition. CFIm25-depleted cells and cfim-1 mutants displayed biased placement of poly(A) tails to more proximal sites in many conserved transcripts. Functional analysis of these transcripts identified the multidrug resistance protein mrp-5/ABCC1 as a previously unidentified regulator of C. elegans vulva development and cell migration in human cells through alternative 3'UTR usage. Our observations demonstrate a conserved functional role for alternative polyadenylation in oncogenic Ras function.

8.
Nat Commun ; 12(1): 4496, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301934

RESUMEN

Leiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Leiomiosarcoma/genética , Músculo Liso/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Evolución Clonal , Estudios de Cohortes , Femenino , Humanos , Leiomiosarcoma/clasificación , Leiomiosarcoma/diagnóstico , Masculino , Persona de Mediana Edad , Músculo Liso/patología , Mutación , RNA-Seq/métodos , Análisis de Supervivencia
9.
Sci Transl Med ; 13(590)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883273

RESUMEN

Fetal lung underdevelopment, also known as pulmonary hypoplasia, is characterized by decreased lung growth and maturation. The most common birth defect found in babies with pulmonary hypoplasia is congenital diaphragmatic hernia (CDH). Despite research and clinical advances, babies with CDH still have high morbidity and mortality rates, which are directly related to the severity of lung underdevelopment. To date, there is no effective treatment that promotes fetal lung growth and maturation. Here, we describe a stem cell-based approach in rodents that enhances fetal lung development via the administration of extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs). Using fetal rodent models of pulmonary hypoplasia (primary epithelial cells, organoids, explants, and in vivo), we demonstrated that AFSC-EV administration promoted branching morphogenesis and alveolarization, rescued tissue homeostasis, and stimulated epithelial cell and fibroblast differentiation. We confirmed this regenerative ability in in vitro models of lung injury using human material, where human AFSC-EVs obtained following good manufacturing practices restored pulmonary epithelial homeostasis. Investigating EV mechanism of action, we found that AFSC-EV beneficial effects were exerted via the release of RNA cargo. MicroRNAs regulating the expression of genes involved in lung development, such as the miR17-92 cluster and its paralogs, were highly enriched in AFSC-EVs and were increased in AFSC-EV-treated primary lung epithelial cells compared to untreated cells. Our findings suggest that AFSC-EVs hold regenerative ability for underdeveloped fetal lungs, demonstrating potential for therapeutic application in patients with pulmonary hypoplasia.


Asunto(s)
Líquido Amniótico , Vesículas Extracelulares , Pulmón/embriología , Células Madre , Animales , Humanos , Roedores
10.
NAR Genom Bioinform ; 3(1): lqab011, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33655208

RESUMEN

RNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) and reveal biological mechanisms underlying complex biological processes. RNA-seq is often performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell-types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) methods solve this problem, technical and cost constraints currently limit its widespread use. Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores to DEGs obtained from bulk RNA-seq by leveraging cell-type expression data generated by scRNA-seq and existing deconvolution methods. After evaluating scMappR with simulated RNA-seq data and benchmarking scMappR using RNA-seq data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type specific changes that occur during kidney regeneration. scMappR appropriately assigned DEGs to cell-types involved in kidney regeneration, including a relatively small population of immune cells. While scMappR can work with user-supplied scRNA-seq data, we curated scRNA-seq expression matrices for ∼100 human and mouse tissues to facilitate its stand-alone use with bulk RNA-seq data from these species. Overall, scMappR is a user-friendly R package that complements traditional differential gene expression analysis of bulk RNA-seq data.

11.
PLoS Biol ; 18(7): e3000710, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32667910

RESUMEN

During gestation, uterine smooth muscle cells transition from a state of quiescence to one of contractility, but the molecular mechanisms underlying this transition at a genomic level are not well-known. To better understand these events, we evaluated the epigenetic landscape of the mouse myometrium during the pregnant, laboring, and postpartum stages. We generated gestational time point-specific enrichment profiles for histone H3 acetylation on lysine residue 27 (H3K27ac), histone H3 trimethylation of lysine residue 4 (H3K4me3), and RNA polymerase II (RNAPII) occupancy by chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq), as well as gene expression profiles by total RNA-sequencing (RNA-seq). Our findings reveal that 533 genes, including known contractility-driving genes (Gap junction alpha 1 [Gja1], FBJ osteosarcoma oncogene [Fos], Fos-like antigen 2 [Fosl2], Oxytocin receptor [Oxtr], and Prostaglandin G/H synthase 2 (Ptgs2), for example), are up-regulated at day 19 during active labor because of an increase in transcription at gene bodies. Labor-associated promoters and putative intergenic enhancers, however, are epigenetically activated as early as day 15, by which point the majority of genome-wide H3K27ac or H3K4me3 peaks present in term laboring tissue is already established. Despite this early exhibited histone signature, increased noncoding enhancer RNA (eRNA) production at putative intergenic enhancers and recruitment of RNAPII to the gene bodies of labor-associated loci were detected only during labor. Our findings indicate that epigenetic activation of the myometrial genome precedes active labor by at least 4 days in the mouse model, suggesting that the myometrium is poised for rapid activation of contraction-associated genes in order to exit the state of quiescence.


Asunto(s)
Epigénesis Genética , Sitios Genéticos , Trabajo de Parto/genética , Miometrio/fisiología , Contracción Uterina/genética , Animales , Secuencia de Bases , Femenino , Código de Histonas/genética , Ratones Endogámicos C57BL , Modelos Genéticos , Embarazo , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Polimerasa II/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Transcriptoma/genética , Regulación hacia Arriba/genética
13.
Mol Cell ; 73(3): 621-638.e17, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554943

RESUMEN

Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1.


Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Antineoplásicos/química , Azepinas/química , Proteínas de Ciclo Celular , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células K562 , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/química
14.
Dev Cell ; 48(2): 167-183.e5, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30554998

RESUMEN

SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína Gli2 con Dedos de Zinc/genética , Animales , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Ratones
15.
Hum Mol Genet ; 26(18): 3585-3599, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28911201

RESUMEN

The timing of human puberty is highly variable, sexually dimorphic, and associated with adverse health outcomes. Over 20 genes carrying rare mutations have been identified in known pubertal disorders, many of which encode critical components of the hypothalamic-pituitary-gonadal (HPG) axis. Recent genome-wide association studies (GWAS) have identified more than 100 candidate genes at loci associated with age at menarche or voice breaking in males. We know little about the spatial, temporal or postnatal expression patterns of the majority of these puberty-associated genes. Using a high-throughput and sensitive microfluidic quantitative PCR strategy, we profiled the gene expression patterns of the mouse orthologs of 178 puberty-associated genes in male and female mouse HPG axis tissues, the pineal gland, and the liver at five postnatal ages spanning the pubertal transition. The most dynamic gene expression changes were observed prior to puberty in all tissues. We detected known and novel tissue-enhanced gene expression patterns, with the hypothalamus expressing the largest number of the puberty-associated genes. Notably, over 40 puberty-associated genes in the pituitary gland showed sex-biased gene expression, most of which occurred peri-puberty. These sex-biased genes included the orthologs of candidate genes at GWAS loci that show sex-discordant effects on pubertal timing. Our findings provide new insight into the expression of puberty-associated genes and support the possibility that the pituitary plays a role in determining sex differences in the timing of puberty.


Asunto(s)
Maduración Sexual/genética , Transcriptoma/genética , Animales , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Sistema Hipotálamo-Hipofisario , Hipotálamo/metabolismo , Masculino , Ratones , Análisis por Micromatrices , Hipófisis/metabolismo , Sistema Hipófiso-Suprarrenal , Caracteres Sexuales , Factores Sexuales
16.
Nat Med ; 23(8): 984-989, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714989

RESUMEN

Splice-site defects account for about 10% of pathogenic mutations that cause Mendelian diseases. Prevalence is higher in neuromuscular disorders (NMDs), owing to the unusually large size and multi-exonic nature of genes encoding muscle structural proteins. Therapeutic genome editing to correct disease-causing splice-site mutations has been accomplished only through the homology-directed repair pathway, which is extremely inefficient in postmitotic tissues such as skeletal muscle. Here we describe a strategy using nonhomologous end-joining (NHEJ) to correct a pathogenic splice-site mutation. As a proof of principle, we focus on congenital muscular dystrophy type 1A (MDC1A), which is characterized by severe muscle wasting and paralysis. Specifically, we correct a splice-site mutation that causes the exclusion of exon 2 from Lama2 mRNA and the truncation of Lama2 protein in the dy2J/dy2J mouse model of MDC1A. Through systemic delivery of adeno-associated virus (AAV) carrying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome-editing components, we simultaneously excise an intronic region containing the mutation and create a functional donor splice site through NHEJ. This strategy leads to the inclusion of exon 2 in the Lama2 transcript and restoration of full-length Lama2 protein. Treated dy2J/dy2J mice display substantial improvement in muscle histopathology and function without signs of paralysis.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Terapia Genética/métodos , Laminina/genética , Distrofias Musculares/genética , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , Animales , Western Blotting , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Laminina/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/patología , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Genome Biol ; 17(1): 182, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27582050

RESUMEN

BACKGROUND: Type II DNA topoisomerases (TOP2) regulate DNA topology by generating transient double stranded breaks during replication and transcription. Topoisomerase II beta (TOP2B) facilitates rapid gene expression and functions at the later stages of development and differentiation. To gain new insight into the genome biology of TOP2B, we used proteomics (BioID), chromatin immunoprecipitation, and high-throughput chromosome conformation capture (Hi-C) to identify novel proximal TOP2B protein interactions and characterize the genomic landscape of TOP2B binding at base pair resolution. RESULTS: Our human TOP2B proximal protein interaction network included members of the cohesin complex and nucleolar proteins associated with rDNA biology. TOP2B associates with DNase I hypersensitivity sites, allele-specific transcription factor (TF) binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately half of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo mapping of TOP2B, CTCF, and cohesin sites revealed a striking structural ordering of these proteins along the genome relative to the CTCF motif. These ordered TOP2B-CTCF-cohesin sites flank the boundaries of topologically associating domains (TADs) with TOP2B positioned externally and cohesin internally to the domain loop. CONCLUSIONS: TOP2B is positioned to solve topological problems at diverse cis-regulatory elements and its occupancy is a highly ordered and prevalent feature of CTCF/cohesin binding sites that flank TADs.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Mapas de Interacción de Proteínas/genética , Proteínas Represoras/genética , Transcripción Genética , Alelos , Animales , Sitios de Unión , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/metabolismo , Genoma , Humanos , Ratones , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , Unión Proteica , Proteómica , Proteínas Represoras/metabolismo , Cohesinas
18.
Genome Biol ; 13(2): R11, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22348290

RESUMEN

BACKGROUND: During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells. RESULTS: We purified PGCs from Drosophila embryos, defined their proteome and transcriptome, and assessed the content, scale and dynamics of their MZT. Transcripts encoding proteins that implement particular types of biological functions group into nine distinct expression profiles, reflecting coordinate control at the transcriptional and posttranscriptional levels. mRNAs encoding germ-plasm components and cell-cell signaling molecules are rapidly degraded while new transcription produces mRNAs encoding the core transcriptional and protein synthetic machineries. The RNA-binding protein Smaug is essential for the PGC MZT, clearing transcripts encoding proteins that regulate stem cell behavior, transcriptional and posttranscriptional processes. Computational analyses suggest that Smaug and AU-rich element binding proteins function independently to control transcript elimination. CONCLUSIONS: The scale of the MZT is similar in the soma and PGCs. However, the timing and content of their MZTs differ, reflecting the distinct developmental imperatives of these cell types. The PGC MZT is delayed relative to that in the soma, likely because relief of PGC-specific transcriptional silencing is required for zygotic genome activation as well as for efficient maternal transcript clearance.


Asunto(s)
Drosophila melanogaster , Desarrollo Embrionario/genética , ARN Mensajero Almacenado/metabolismo , Cigoto/metabolismo , Animales , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Proteoma/genética , ARN Mensajero Almacenado/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...