Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 2): 130525, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431004

RESUMEN

To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.


Asunto(s)
Celulosa , Hidrogeles , Celulosa/química , Hidrogeles/química , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos , Campos Magnéticos
2.
J Invertebr Pathol ; 127: 47-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25754522

RESUMEN

Bacillus thuringiensis (Bt) insecticidal crystal (Cry) proteins are effective against some insect pests in sprays and transgenic crops, although the evolution of resistance could threaten the long-term efficacy of such Bt use. One strategy to delay resistance to Bt crops is to "pyramid" two or more Bt proteins that bind to distinct receptor proteins within the insect midgut. The most common Bt pyramid in cotton (Gossypium hirsutum L.) employs Cry1Ac with Cry2Ab to target several key lepidopteran pests, including the beet armyworm, Spodoptera exigua (Hübner), which is a serious migratory pest of many vegetable crops and is increasingly important in cotton in China. While cadherin and aminopeptidase-N are key receptors of Cry1 toxins in many lepidopterans including S. exigua, the receptor for Cry2A toxins remains poorly characterized. Here, we show that a heterologous expressed peptide corresponding to cadherin repeat 7 to the membrane proximal extracellular domain (CR7-MPED) in the S. exigua cadherin 1b (SeCad1b) binds Cry1Ac and Cry2Aa. Moreover, SeCad1b transcription was suppressed in S. exigua larvae by oral RNA interference and susceptibility to Cry1Ac and Cry2Aa was significantly reduced. These results indicate that SeCad1b plays important functional roles of both Cry1Ac and Cry2Aa, having major implications for resistance management for S. exigua in Bt crops.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cadherinas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistencia a los Insecticidas/fisiología , Spodoptera/genética , Spodoptera/metabolismo , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Immunoblotting , Control Biológico de Vectores/métodos , Plantas Modificadas Genéticamente/parasitología , Reacción en Cadena de la Polimerasa , Spodoptera/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA