Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(41): e202210069, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35982548

RESUMEN

Due to the lack of suitable chemical tools, probing the protein-specific glycation is highly challenging. Herein, we present a strategy based on glycation chemical reporter and proximity-induced FRET signal readout for visualizing protein-specific glycation in living cells. We first developed a bioorthogonal glucose analogue, 6-azido-6-deoxy-D-glucose (6AzGlc), as a novel glycation chemical reporter. Two types of DNA probes, glycation conversion probe and protein targeting probe, were designed to attach to glycation adducts and target proteins, respectively. After the protein was glycated by 6AzGlc, two DNA probes were sequentially applied to the target protein, triggering proximity-induced FRET signal readout. This strategy was successfully used to visualize glucose glycation of several proteins, including PD-L1 and integrin. More importantly, this strategy allowed us to analyze corresponding biological functions of glycated protein in the native environment.


Asunto(s)
Antígeno B7-H1 , Glucosa , Sondas de ADN , Glicosilación , Integrinas
2.
Angew Chem Int Ed Engl ; 60(27): 15006-15012, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33871140

RESUMEN

Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO42- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO42- -catalyzed generation of 1 O2 from H2 O2 and protects MoO42- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.


Asunto(s)
Fluorescencia , Molibdeno/química , Nanopartículas/química , Fotoquimioterapia , Oxígeno Singlete/química , Catálisis , Humanos , Rayos Infrarrojos , Hipoxia Tumoral , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...