Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15443, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723182

RESUMEN

Here, we propose a green and sustainable 3D porous aerogel based on citrus peel (CP), chitosan (CS), and bentonite (BT). This aerogel is prepared through a simple sol-gel and freeze-drying process and is designed for efficient capture of Cu(II) ions from water matrices. CCBA-2, with its abundance of active binding sites, exhibits an impressive Cu(II) adsorption yield of 861.58 mg/g. The adsorption isotherm and kinetics follow the Freundlich and pseudo-second-order models, respectively. In the presence of coexisting mixed-metal ions, CCBA-2 demonstrates a significantly higher selectivity coefficient (KdCu = 1138.5) for removing Cu(II) ions compared to other toxic metal ions. Furthermore, the adsorption of Cu(II) ions by CCBA-2 is not significantly affected by coexisting cations/anions, ionic strength, organic matter, or different water matrices. Dynamic fixed-bed column experiments show that the adsorption capacity of Cu(II) ions reaches 377.4 mg/g, and the Yoon-Nelson model accurately describes the adsorption process and breakthrough curve. Through experiments, FTIR, and XPS analyses, we propose a reasonable binding mechanism between CCBA-2 and metal cations, involving electrostatic attraction and chemical chelation between Cu(II) and the functional groups of the aerogel. CCBA-2 saturated with Cu(II) ions can be successfully regenerated by elution with 1 M HNO3, with only a slight decrease in adsorption efficiency (5.3%) after 5 adsorption-desorption cycles. Therefore, CCBA-2 offers a cost-effective and environmentally friendly material that can be considered as a viable alternative for the green and efficient removal of toxic Cu(II) ions from wastewater.

2.
J Ethnopharmacol ; 308: 116289, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36822344

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: DiDang Decoction (DDD) is a traditional classical prescription that has been used to treat atherosclerosis (AS) and hyperlipidemia (HLP) in China. Nevertheless, the underlying mechanism of DDD remains unclear. AIM OF THE STUDY: To validate the mechanism of DDD in AS and HLP based on network pharmacology and in vitro experiments. MATERIALS AND METHODS: The chemical components of DDD were obtained from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) database and literature mining, and the disease targets of AS and HLP were obtained from the Gencards, OMIM, and DisGeNET databases. The intersection genes were imported into the STRING database to construct protein-protein interaction (PPI) network, and the DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Combined with the results of KEGG pathway analysis, the HIF-1 signaling pathway was selected for further in vitro experiments. RESULTS: The results showed that network pharmacology predicted 112 targets related to DDD treatment of AS and HLP, and the top 10 related pathways are: Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, Chemical carcinogenesis - receptor activation, Pathways in cancer, Proteoglycans in cancer, Fluid shear stress and atherosclerosis, HIF-1 signaling pathway, Alcoholic liver disease, PPAR signaling pathway, and Coronavirus disease-COVID-19. In vitro experiments showed that DDD effectively reduced lipid accumulation in FFA-treated L02 cells; DDD attenuated mitochondrial damage and reduced ROS content; DDD inhibited ferroptosis and apoptosis; DDD up-regulated the expression of HIF-1α, Glutathione Peroxidase 4(GPX4), and Bcl2 proteins, and down-regulated expression of Bax protein. CONCLUSION: DDD exerts therapeutic effects on AS and HLP through multiple targets and pathways, and improves mitochondrial function, reduces ROS content, inhibits ferroptosis and apoptosis by activating the HIF-1 signaling pathway, which provides reliable theoretical and experimental support for DDD treatment of AS and HLP.


Asunto(s)
Aterosclerosis , COVID-19 , Medicamentos Herbarios Chinos , Hiperlipidemias , Humanos , Metabolismo de los Lípidos , Especies Reactivas de Oxígeno , Transducción de Señal , Mitocondrias , Lípidos , Simulación del Acoplamiento Molecular , Medicina Tradicional China
3.
Artículo en Inglés | MEDLINE | ID: mdl-36212944

RESUMEN

Sick sinus syndrome (SSS) is closely associated with cardiac syncope and sudden death, wherein sinoatrial node (SAN) fibrosis is one of the main pathological changes that occur. Shenxian-Shengmai oral liquid (SXSM) has been clinically proven to significantly improve the heart rate of SSS patients. In this study, we aimed to explore the mechanism of SXSM in reducing the SAN fibrosis by combining in vitro and in vivo experiments. Accordingly, the SSS model was constructed by slowly pumping angiotensin II (AngII) with a micro-osmotic pump. The degree of fibrosis was evaluated by Masson's trichrome staining and immunofluorescence staining of the fibrosis marker protein. In addition, NIH-3T3 mouse fibroblasts were used to simulate SAN fibroblasts to further explore the mechanism, with AngII used as the cellular fibrosis inducer. Monodansylcadaverine (MDC) staining and transmission electron microscopy were employed to assay the autophagy content, whereas immunofluorescence staining and Western blotting were employed to elucidate the related protein expression. Finally, fibroblasts were given the AKT phosphorylation agonist SC79 to reversely verify the effects of SXSM. The results showed that SXSM could significantly increase the heart rate of SSS mice by reducing the deposition of extracellular matrix (ECM) in SAN induced by AngII. According to in vivo experiments, when compared with the model group, SSS mice treated with SXSM developed less fibrosis in the SAN area. In vitro experiments revealed that AngII could restrain autophagy by activating the phosphorylation of the AKT/mTOR pathway, thereby increasing the deposition of ECM. Moreover, SXSM pretreatment prevented this upregulation. After the intervention of SC79, the protective effect of SXSM was weakened. In conclusion, SXSM activated autophagy through the AKT/mTOR pathway, which in turn reduced the deposition of the ECM in SAN induced by AngII, attenuated the fibrosis of SAN, and improved the decreased heart rate in the SSS mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA