Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Intervalo de año de publicación
1.
Rev. int. med. cienc. act. fis. deporte ; 23(93): 151-169, nov.- dec. 2023. tab
Artículo en Inglés | IBECS | ID: ibc-230002

RESUMEN

Objective: This study aims to assess the effectiveness of a rehabilitation program combining Traditional Chinese Medicine (TCM) and Western medicine, founded on the Guided Care model, in enhancing physical fitness among obese middle-aged and young stroke patients who are fitness enthusiasts. Methods: Eighty obese middle-aged and young stroke patients were randomly divided into two groups: a control group (n=40) and an intervention group (n=40). The control group received standard nursing care, while the intervention group was treated with a Guided Care model integrating TCM and Western medicine rehabilitation. The focus was on improving physical fitness parameters in addition to traditional outcomes. Parameters such as self-efficacy, family function, quality of life, and physical fitness measures were compared between the groups at admission and six months’ post-discharge. Results: After six months, the intervention group showed significantly higher improvements in disease management, medication adherence, dietary habits, daily life activities, emotional stability, social and interpersonal interactions, and rehabilitation exercise management (P < 0.01). Specifically, physical fitness levels in the intervention group markedly improved compared to the control group. The total scores for self-efficacy, family function, quality of life, and physical fitness in the intervention group were significantly higher (208.20 ± 13.58, 7.93 ± 2.53 193.05 ± 9.00, and a physical fitness score indicative of enhanced endurance and strength) than those in the control group (180.73 ± 15.52, 5.18 ± 2.60, 166.15 ± 12.05, and a lower physical fitness score) (AU)


Asunto(s)
Humanos , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular/métodos , Obesidad , Terapia por Ejercicio , Medicina Tradicional , Estudios de Casos y Controles
2.
Curr Mol Med ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37489776

RESUMEN

BACKGROUND: Long intergenic non-protein coding RNA 1116 (LINC01116) plays a carcinogenic role in a variety of cancers. The study aims to investigate the roles of LINC01116 and hsa-miR-9-5p (miR-9-5p) and fathom their interaction in chordoma. METHOD: The predicted binding sites between miR-9-5p with LINC01116 and phosphoglycerate kinase 1 (PGK1) by starBase were confirmed through dual-luciferase reporter assay. The behaviors of chordoma cells undergoing transfection with siLINC01116 or miR-9-5p inhibitor were determined by Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and flow cytometry assays. The glucose consumption, lactate production, and adenosine triphosphate (ATP) production of chordoma cells were examined with specific kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to determine relevant gene expressions in chordoma cells. RESULTS: Silencing of LINC01116 facilitated the apoptosis and expressions of Bcl-2- associated X (Bax), cleaved caspase-3 (C caspase-3) and miR-9-5p while repressing the cell cycle, viability, proliferation, invasion, glucose consumption, lactate production, ATP production, and expressions of PGK1 and Bcl-2. Meanwhile, LINC01116 sponged miR-9-5p, which could target PGK1. Moreover, the miR-9-5p inhibitor acted contrarily and reversed the role of siLINC01116 in chordoma cells. Besides, LINC01116 downregulation facilitated apoptosis and attenuated the proliferation and invasion of chordoma cells as well as PGK1 expression by upregulating miR-9-5p expression. CONCLUSION: LINC01116/miR-9-5p plays a regulatory role in the progression of chordoma cells and is a potential biomarker for chordoma.

3.
J Genet Genomics ; 50(9): 661-675, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37230320

RESUMEN

Prior to the generation of hematopoietic stem cells (HSCs) from the hemogenic endothelial cells (HECs) mainly in the dorsal aorta in midgestational mouse embryos, multiple hematopoietic progenitors including erythro-myeloid progenitors and lymphoid progenitors are generated from yolk sac HECs. These HSC-independent hematopoietic progenitors have recently been identified as major contributors to functional blood cell production until birth. However, little is known about yolk sac HECs. Here, combining integrative analyses of multiple single-cell RNA-sequencing datasets and functional assays, we reveal that Neurl3-EGFP, in addition to marking the continuum throughout the ontogeny of HSCs from HECs, can also serve as a single enrichment marker for yolk sac HECs. Moreover, while yolk sac HECs have much weaker arterial characteristics than either arterial endothelial cells in the yolk sac or HECs within the embryo proper, the lymphoid potential of yolk sac HECs is largely confined to the arterial-biased subpopulation featured by the Unc5b expression. Interestingly, the B lymphoid potential of hematopoietic progenitors, but not for myeloid potentials, is exclusively detected in Neurl3-negative subpopulations in midgestational embryos. Taken together, these findings enhance our understanding of blood birth from yolk sac HECs and provide theoretical basis and candidate reporters for monitoring step-wise hematopoietic differentiation.


Asunto(s)
Hemangioblastos , Hematopoyesis , Animales , Ratones , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Zhejiang Univ Sci B ; 24(3): 248-261, 2023 Mar 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-36916000

RESUMEN

An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.


Asunto(s)
Células Estrelladas Hepáticas , Receptores de Calcitriol , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Macrófagos/metabolismo
5.
World Neurosurg ; 175: e55-e63, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36907270

RESUMEN

BACKGROUND: Diabetes insipidus (DI) is a common complication after endoscopic transsphenoidal surgery (TSS) for pituitary adenoma (PA), which affects the quality of life in patients. Therefore, there is a need to develop prediction models of postoperative DI specifically for patients who undergo endoscopic TSS. This study establishes and validates prediction models of DI after endoscopic TSS for patients with PA using machine learning algorithms. METHODS: We retrospectively collected information about patients with PA who underwent endoscopic TSS in otorhinolaryngology and neurosurgery departments between January 2018 and December 2020. The patients were randomly split into a training set (70%) and a test set (30%). The 4 machine learning algorithms (logistic regression, random forest, support vector machine, and decision tree) were used to establish the prediction models. Area under the receiver operating characteristic curves were calculated to compare the performance of the models. RESULTS: A total of 232 patients were included, and 78 patients (33.6%) developed transient DI after surgery. Data were randomly divided into a training set (n = 162) and a test set (n = 70) for development and validation of the model, respectively. The area under the receiver operating characteristic curve was highest in the random forest model (0.815) and lowest in the logistic regression model (0.601). Invasion of pituitary stalk was the most important feature for model performance, closely followed by macroadenomas, size classification of PA, tumor texture, and Hardy-Wilson suprasellar grade. CONCLUSIONS: Machine learning algorithms identify preoperative features of importance and reliably predict DI after endoscopic TSS for patients with PA. Such a prediction model may enable clinicians to develop individualized treatment strategy and follow-up management.


Asunto(s)
Adenoma , Diabetes Insípida , Diabetes Mellitus , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/cirugía , Neoplasias Hipofisarias/complicaciones , Estudios Retrospectivos , Calidad de Vida , Adenoma/cirugía , Adenoma/complicaciones , Diabetes Insípida/diagnóstico , Diabetes Insípida/etiología , Aprendizaje Automático , Complicaciones Posoperatorias/etiología
6.
Adv Sci (Weinh) ; 10(6): e2203813, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36638254

RESUMEN

In the aorta of mid-gestational mouse embryos, a specialized endothelial subpopulation termed hemogenic endothelial cells (HECs) develops into hematopoietic stem and progenitor cells (HSPCs), through a conserved process of endothelial-to-hematopoietic transition (EHT). EHT is tightly controlled by multiple intrinsic and extrinsic mechanisms. Nevertheless, the molecular regulators restraining this process remain poorly understood. Here, it is uncovered that, one of the previously identified HEC signature genes, Nupr1, negatively regulates the EHT process. Nupr1 deletion in endothelial cells results in increased HSPC generation in the aorta-gonad-mesonephros region. Furthermore, single-cell transcriptomics combined with serial functional assays reveals that loss of Nupr1 promotes the EHT process by promoting the specification of hematopoiesis-primed functional HECs and strengthening their subsequent hematopoietic differentiation potential toward HSPCs. This study further finds that the proinflammatory cytokine, tumor necrosis factor α (TNF-α), is significantly upregulated in Nupr1-deficient HECs, and the use of a specific TNF-α neutralizing antibody partially reduces excessive HSPC generation in the explant cultures from Nupr1-deficient embryos. This study identifies a novel negative regulator of EHT and the findings indicate that Nupr1 is a new potential target for future hematopoietic stem cell regeneration research.


Asunto(s)
Células Endoteliales , Mesonefro , Animales , Ratones , Aorta , Gónadas , Factor de Necrosis Tumoral alfa
7.
ACS Nano ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36595464

RESUMEN

Immune checkpoint inhibitors (ICIs) have displayed potential efficacy in triple-negative breast cancer (TNBC) treatment, while only a minority of patients benefit from ICI therapy currently. Although activation of the innate immune stimulator of interferon genes (STING) pathway potentiates antitumor immunity and thus sensitizes tumors to ICIs, the efficient tumor penetration of STING agonists remains critically challenging. Herein, we prepare a tumor-penetrating neotype neutrophil cytopharmaceutical (NEs@STING-Mal-NP) with liposomal STING agonists conjugating on the surface of neutrophils, which is different from the typical neutrophil cytopharmaceutical that loads drugs inside the neutrophils. We show NEs@STING-Mal-NP that inherit the merits of neutrophils including proactive tumor vascular extravasation and tissue penetration significantly boost the tumor penetration of STING agonists. Moreover, the backpacked liposomal STING agonists can be released in response to hyaluronidase rich in the tumor environment, leading to enhanced uptake by tumor-infiltrating immune cells and tumor cells. Thus, NEs@STING-Mal-NP effectively activate the STING pathway and reinvigorate the tumor environment through converting macrophages and neutrophils to antitumor phenotypes, promoting the maturation of dendritic cells, and enhancing the infiltration and tumoricidal ability of T cells. Specifically, this cytopharmaceutical displays a significant inhibition on tumor growth and prolongs the survival of TNBC-bearing mice when combined with ICIs. We demonstrate that neutrophils serve as promising vehicles for delivering STING agonists throughout solid tumors and the developed neutrophil cytopharmaceuticals with backpacked STING agonists exhibit huge potential in boosting the immunotherapy of ICIs.

8.
Adv Exp Med Biol ; 1442: 1-16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38228955

RESUMEN

Hematopoietic stem cells (HSCs) are situated at the top of the adult hematopoietic hierarchy in mammals and give rise to the majority of blood cells throughout life. Recently, with the advance of multiple single-cell technologies, researchers have unprecedentedly deciphered the cellular and molecular evolution, the lineage relationships, and the regulatory mechanisms underlying HSC emergence in mammals. In this review, we describe the precise vascular origin of HSCs in mouse and human embryos, emphasizing the conservation in the unambiguous arterial characteristics of the HSC-primed hemogenic endothelial cells (HECs). Serving as the immediate progeny of some HECs, functional pre-HSCs of mouse embryos can now be isolated at single-cell level using defined surface marker combinations. Heterogeneity regrading cell cycle status or lineage differentiation bias within HECs, pre-HSCs, or emerging HSCs in mouse embryos has been figured out. Several epigenetic regulatory mechanisms of HSC generation, including long noncoding RNA, DNA methylation modification, RNA splicing, and layered epigenetic modifications, have also been recently uncovered. In addition to that of HSCs, the cellular and molecular events underlying the development of multiple hematopoietic progenitors in human embryos/fetus have been unraveled with the use of series of single-cell technologies. Specifically, yolk sac-derived myeloid-biased progenitors have been identified as the earliest multipotent hematopoietic progenitors in human embryo, serving as an important origin of fetal liver monocyte-derived macrophages. Moreover, the development of multiple hematopoietic lineages in human embryos such as T and B lymphocytes, innate lymphoid cells, as well as myeloid cells like monocytes, macrophages, erythrocytes, and megakaryocytes has also been depicted and reviewed here.


Asunto(s)
Células Endoteliales , Inmunidad Innata , Ratones , Humanos , Animales , Linfocitos , Células Madre Hematopoyéticas , Hematopoyesis , Diferenciación Celular , Embrión de Mamíferos , Mamíferos , Linaje de la Célula
9.
ORL J Otorhinolaryngol Relat Spec ; 84(6): 464-472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35820402

RESUMEN

BACKGROUND: IgG4-related disease (IgG4-RD) is increasingly recognized as a multisystemic, chronic inflammatory process characterized by histologic fibrosis with IgG4-positive plasma cell infiltration. OBJECTIVES: The purpose of this study was to characterize the imaging features of patients diagnosed with IgG4-RD in the head and neck, especially the skull base. METHODS: Our study evaluated CT and MR imaging features of IgG4-RD in the head, neck, and skull base. Images from 15 patients were retrospectively evaluated for the location, signal intensity, morphology, size, boundary, and pre- and post-contrast MRI performances. RESULTS: The lesions presented as irregular shaped, localized masses, distributed in skull base regions; 93.3% of the lesions were isointensity in T1WI (14/15). A total of 80% of the lesions were iso-hypointense in T2WI (12/15); 60% of the lesions got homogeneous enhancement (9/15); and 46.7% of the patients had cranial nerves dysfunction (7/15). The most likely involved cranial nerve was trigeminal nerves (5/15); 60% of the patients had osteolytic bone destruction or sclerosis (9/15). CONCLUSION: Typical radiological features of IgG4-RD included T1 isointensity and T2 hypointensity, homogeneous and gradual enhancement pattern in MRI, easy cranial nerve invasion, dura involvement but the absence of brain edema, and the presence of bone remodeling without destruction, blurred lesion boundaries.


Asunto(s)
Enfermedad Relacionada con Inmunoglobulina G4 , Humanos , Enfermedad Relacionada con Inmunoglobulina G4/diagnóstico por imagen , Estudios Retrospectivos , Cabeza/diagnóstico por imagen , Cuello , Imagen por Resonancia Magnética/métodos , Base del Cráneo/diagnóstico por imagen
10.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563299

RESUMEN

Phospholipase Dα (PLDα), which produces signaling molecules phosphatidic acid (PA), has been shown to play a critical role in plants adapting to salt environments. However, it is unclear whether phospholipase Dδ (PLDδ) can mediate the salt response in higher plants. PePLDδ was isolated from salt-resistant Populus euphratica and transferred to Arabidopsis thaliana to testify the salt tolerance of transgenic plants. The NaCl treatment (130 mM) reduced the root growth and whole-plant fresh weight of wild-type (WT) A. thaliana, vector controls (VC) and PePLDδ-overexpressed lines, although a less pronounced effect was observed in transgenic plants. Under salt treatment, PePLDδ-transgenic Arabidopsis exhibited lower electrolyte leakage, malondialdehyde content and H2O2 levels than WT and VC, resulting from the activated antioxidant enzymes and upregulated transcripts of genes encoding superoxide dismutase, ascorbic acid peroxidase and peroxidase. In addition, PePLDδ-overexpressed plants increased the transcription of genes encoding the plasma membrane Na+/H+ antiporter (AtSOS1) and H+-ATPase (AtAHA2), which enabled transgenic plants to proceed with Na+ extrusion and reduce K+ loss under salinity. The capacity to regulate reactive oxygen species (ROS) and K+/Na+ homeostasis was associated with the abundance of specific PA species in plants overexpressing PePLDδ. PePLDδ-transgenic plants retained a typically higher abundance of PA species, 34:2 (16:0-18:2), 34:3 (16:0-18:3), 36:4 (18:2-18:2), 36:5 (18:2-18:3) and 36:6 (18:3-18:3), under control and saline conditions. It is noteworthy that PA species 34:2 (16:0-18:2), 34:3 (16:0-18:3), 36:4 (18:2-18:2) and 36:5 (18:2-18:3) markedly increased in response to NaCl in transgenic plants. In conclusion, we suppose that PePLDδ-derived PA enhanced the salinity tolerance by regulating ROS and K+/Na+ homeostasis in Arabidopsis.


Asunto(s)
Arabidopsis , Populus , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Peróxido de Hidrógeno/metabolismo , Peroxidasas/metabolismo , Fosfolipasas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Populus/genética , Populus/metabolismo , ATPasas de Translocación de Protón/genética , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo , Cloruro de Sodio/metabolismo
11.
Nat Commun ; 13(1): 346, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039499

RESUMEN

The gene activity underlying cell differentiation is regulated by a diverse set of transcription factors (TFs), histone modifications, chromatin structures and more. Although definitive hematopoietic stem cells (HSCs) are known to emerge via endothelial-to-hematopoietic transition (EHT), how the multi-layered epigenome is sequentially unfolded in a small portion of endothelial cells (ECs) transitioning into the hematopoietic fate remains elusive. With optimized low-input itChIP-seq and Hi-C assays, we performed multi-omics dissection of the HSC ontogeny trajectory across early arterial ECs (eAECs), hemogenic endothelial cells (HECs), pre-HSCs and long-term HSCs (LT-HSCs) in mouse embryos. Interestingly, HSC regulatory regions are already pre-configurated with active histone modifications as early as eAECs, preceding chromatin looping dynamics within topologically associating domains. Chromatin looping structures between enhancers and promoters only become gradually strengthened over time. Notably, RUNX1, a master TF for hematopoiesis, enriched at half of these loops is observed early from eAECs through pre-HSCs but its enrichment further increases in HSCs. RUNX1 and co-TFs together constitute a central, progressively intensified enhancer-promoter interactions. Thus, our study provides a framework to decipher how temporal epigenomic configurations fulfill cell lineage specification during development.


Asunto(s)
Cromatina/química , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Código de Histonas , Animales , Análisis por Conglomerados , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Elementos de Facilitación Genéticos/genética , Genoma , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
12.
Cell Res ; 32(4): 333-348, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35079138

RESUMEN

Arteriogenesis rather than unspecialized capillary expansion is critical for restoring effective circulation to compromised tissues in patients. Deciphering the origin and specification of arterial endothelial cells during embryonic development will shed light on the understanding of adult arteriogenesis. However, during early embryonic angiogenesis, the process of endothelial diversification and molecular events underlying arteriovenous fate settling remain largely unresolved in mammals. Here, we constructed the single-cell transcriptomic landscape of vascular endothelial cells (VECs) during the time window for the occurrence of key vasculogenic and angiogenic events in both mouse and human embryos. We uncovered two distinct arterial VEC types, the major artery VECs and arterial plexus VECs, and unexpectedly divergent arteriovenous characteristics among VECs that are located in morphologically undistinguishable vascular plexus intra-embryonically. Using computational prediction and further lineage tracing of venous-featured VECs with a newly developed Nr2f2CrexER mouse model and a dual recombinase-mediated intersectional genetic approach, we revealed early and widespread arterialization from the capillaries with considerable venous characteristics. Altogether, our findings provide unprecedented and comprehensive details of endothelial heterogeneity and lineage relationships at early angiogenesis stages, and establish a new model regarding the arteriogenesis behaviors of early intra-embryonic vasculatures.


Asunto(s)
Células Endoteliales , Neovascularización Patológica , Animales , Diferenciación Celular , Humanos , Mamíferos , Ratones
13.
Sci Adv ; 8(1): eabg5369, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995116

RESUMEN

Single-cell transcriptional profiling has rapidly advanced our understanding of the embryonic hematopoiesis; however, whether and what role RNA alternative splicing (AS) plays remains an enigma. This is important for understanding the mechanisms underlying splicing-associated hematopoietic diseases and for the derivation of therapeutic stem cells. Here, we used single-cell full-length transcriptome data to construct an isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell (HSC) transition, which enables the identification of hemogenic signature isoforms and stage-specific AS events. We showed that the inclusion of these hemogenic-specific AS events was essential for hemogenic function in vitro. Expression data and knockout mouse studies highlighted the critical role of Srsf2: Early Srsf2 deficiency from endothelial cells affected the splicing pattern of several master hematopoietic regulators and significantly impaired HSC generation. These results redefine our understanding of the dynamic HSC developmental transcriptome and demonstrate that elaborately controlled RNA splicing governs cell fate in HSC formation.

14.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769083

RESUMEN

Cadmium (Cd2+) pollution occurring in salt-affected soils has become an increasing environmental concern in the world. Fast-growing poplars have been widely utilized for phytoremediation of soil contaminating heavy metals (HMs). However, the woody Cd2+-hyperaccumulator, Populus × canescens, is relatively salt-sensitive and therefore cannot be directly used to remediate HMs from salt-affected soils. The aim of the present study was to testify whether colonization of P. × canescens with ectomycorrhizal (EM) fungi, a strategy known to enhance salt tolerance, provides an opportunity for affordable remediation of Cd2+-polluted saline soils. Ectomycorrhization with Paxillus involutus strains facilitated Cd2+ enrichment in P. × canescens upon CdCl2 exposures (50 µM, 30 min to 24 h). The fungus-stimulated Cd2+ in roots was significantly restricted by inhibitors of plasmalemma H+-ATPases and Ca2+-permeable channels (CaPCs), but stimulated by an activator of plasmalemma H+-ATPases. NaCl (100 mM) lowered the transient and steady-state Cd2+ influx in roots and fungal mycelia. Noteworthy, P. involutus colonization partly reverted the salt suppression of Cd2+ uptake in poplar roots. EM fungus colonization upregulated transcription of plasmalemma H+-ATPases (PcHA4, 8, 11) and annexins (PcANN1, 2, 4), which might mediate Cd2+ conductance through CaPCs. EM roots retained relatively highly expressed PcHAs and PcANNs, thus facilitating Cd2+ enrichment under co-occurring stress of cadmium and salinity. We conclude that ectomycorrhization of woody hyperaccumulator species such as poplar could improve phytoremediation of Cd2+ in salt-affected areas.


Asunto(s)
Basidiomycota/fisiología , Cadmio/metabolismo , Micorrizas/fisiología , Populus/fisiología , Sales (Química)/metabolismo , Biodegradación Ambiental , Salinidad , Cloruro de Sodio/metabolismo , Contaminantes del Suelo/metabolismo , Madera/fisiología
15.
Nano Lett ; 21(22): 9736-9745, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34748340

RESUMEN

Cholesterol crystals (CCs), originally accumulating in the lysosome of cholesterol-laden cells, can aggravate the progression of atherosclerosis. ß-cyclodextrin (CD) is a potent cholesterol acceptor or CC solubilizer. However, the random extraction of cholesterol impedes the in vivo application of CD for removing lysosomal CCs. Here, we exploit poly-ß-cyclodextrin (pCD) as a lysosomal CC solubilizer and dextran sulfate grafted with benzimidazole (BM) as a pH-sensitive switch (pBM) to self-assemble into a supramolecular nanoassembly (pCD/pBM-SNA). The CD cavity in pCD/pBM-SNA can be efficiently sealed by hydrophobic BM at pH 7.4 (OFF). After it enters the lysosome, pCD/pBM-SNA disassembles, recovers the CD cavity to dissolve CCs into free cholesterol due to the protonation of BM (ON), and reduces CCs, finally enhancing the cholesterol efflux and promoting atherosclerosis regression. Our findings provide an "OFF-ON" tactic to remove lysosomal CCs for antiatherosclerosis as well as other diseases such as Niemann-Pick type C diseases with excessive cholesterol accumulation in the lysosome.


Asunto(s)
beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Colesterol , Concentración de Iones de Hidrógeno , Lisosomas , beta-Ciclodextrinas/farmacología
16.
Clinics (Sao Paulo) ; 76: e2820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34614111

RESUMEN

The appropriate dosing regimens of secukinumab for psoriatic arthritis (PsA) are not well defined. We performed a meta-analysis to evaluate the efficacy and safety of different dosing regimens of secukinumab in the treatment of PsA. A systematic search was conducted using major electronic databases to identify relevant randomized controlled trials (RCTs) comparing secukinumab 300 mg versus secukinumab 150 mg in patients with PsA. Meta-analysis was performed using Review Manager software (version 5.3). Six studies with a total of 1141 patients were included. At week 24, secukinumab 300 mg was associated with a higher American College of Rheumatology 20% response (ACR 20), ACR 50, PASI 75 response rate, and dactylitis resolution rate than secukinumab 150 mg, especially in the anti-TNF-IR subgroup. At week 52, secukinumab 300 mg was associated with a higher psoriasis area and severity index (PASI) 75 and PASI 90 response rate than secukinumab 150 mg. There was no significant difference between secukinumab 300 mg and secukinumab 150 mg in the risk of any adverse events (AEs) and serious AEs at either week 24 or week 52. Secukinumab 300 mg was significantly more effective than 150 mg, especially for patients with PsA who have failed TNF therapy, and it was well tolerated.


Asunto(s)
Artritis Psoriásica , Psoriasis , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados , Artritis Psoriásica/tratamiento farmacológico , Humanos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
17.
Mol Med Rep ; 24(6)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34713295

RESUMEN

Atherosclerosis is a chronic inflammatory disease that threatens human health and lives by causing vascular stenosis and plaque rupture. Various animal models have been employed for elucidating the pathogenesis, drug development and treatment validation studies for atherosclerosis. To the best of our knowledge, the species used for atherosclerosis research include mice, rats, hamsters, rabbits, pigs, dogs, non­human primates and birds, among which the most commonly used ones are mice and rabbits. Notably, apolipoprotein E knockout (KO) or low­density lipoprotein receptor KO mice have been the most widely used animal models for atherosclerosis research since the late 20th century. Although the aforementioned animal models can form atherosclerotic lesions, they cannot completely simulate those in humans with respect to lesion location, lesion composition, lipoprotein composition and physiological structure. Hence, an appropriate animal model needs to be selected according to the research purpose. Additionally, it is necessary for atherosclerosis research to include quantitative analysis results of atherosclerotic lesion size and plaque composition. Laboratory animals can provide not only experimental tissues for in vivo studies but also cells needed for in vitro experiments. The present review first summarizes the common animal models and their practical applications, followed by focus on mouse and rabbit models and elucidating the methods to quantify atherosclerotic lesions. Finally, the methods of culturing endothelial cells, macrophages and smooth muscle cells were elucidated in detail and the experiments involved in atherosclerosis research were discussed.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/metabolismo , Animales , Aterosclerosis/patología , Aves , Técnicas de Cultivo de Célula , Cricetinae , Modelos Animales de Enfermedad , Perros , Células Endoteliales/patología , Macrófagos , Ratones , Ratones Noqueados para ApoE , Miocitos del Músculo Liso , Placa Aterosclerótica/patología , Primates , Conejos , Ratas , Receptores de LDL , Porcinos
18.
Front Cell Dev Biol ; 9: 728057, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589491

RESUMEN

In the aorta-gonad-mesonephros (AGM) region of mouse embryos, pre-hematopoietic stem cells (pre-HSCs) are generated from rare and specialized hemogenic endothelial cells (HECs) via endothelial-to-hematopoietic transition, followed by maturation into bona fide hematopoietic stem cells (HSCs). As HECs also generate a lot of hematopoietic progenitors not fated to HSCs, powerful tools that are pre-HSC/HSC-specific become urgently critical. Here, using the gene knockin strategy, we firstly developed an Hlf-tdTomato reporter mouse model and detected Hlf-tdTomato expression exclusively in the hematopoietic cells including part of the immunophenotypic CD45- and CD45+ pre-HSCs in the embryonic day (E) 10.5 AGM region. By in vitro co-culture together with long-term transplantation assay stringent for HSC precursor identification, we further revealed that unlike the CD45- counterpart in which both Hlf-tdTomato-positive and negative sub-populations harbored HSC competence, the CD45+ E10.5 pre-HSCs existed exclusively in Hlf-tdTomato-positive cells. The result indicates that the cells should gain the expression of Hlf prior to or together with CD45 to give rise to functional HSCs. Furthermore, we constructed a novel Hlf-CreER mouse model and performed time-restricted genetic lineage tracing by a single dose induction at E9.5. We observed the labeling in E11.5 AGM precursors and their contribution to the immunophenotypic HSCs in fetal liver (FL). Importantly, these Hlf-labeled early cells contributed to and retained the size of the HSC pool in the bone marrow (BM), which continuously differentiated to maintain a balanced and long-term multi-lineage hematopoiesis in the adult. Therefore, we provided another valuable mouse model to specifically trace the fate of emerging HSCs during development.

19.
Front Cell Dev Biol ; 9: 699263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458261

RESUMEN

Hematopoietic stem cells (HSCs) are derived from hemogenic endothelial cells (HECs) during embryogenesis. The HSC-primed HECs increased to the peak at embryonic day (E) 10 and have been efficiently captured by the marker combination CD41-CD43-CD45-CD31+CD201+Kit+CD44+ (PK44) in the aorta-gonad-mesonephros (AGM) region of mouse embryos most recently. In the present study, we investigated the spatiotemporal and functional heterogeneity of PK44 cells around the time of emergence of HSCs. First, PK44 cells in the E10.0 AGM region could be further divided into three molecularly different populations showing endothelial- or hematopoietic-biased characteristics. Specifically, with the combination of Kit, the expression of CD93 or CD146 could divide PK44 cells into endothelial- and hematopoietic-feature biased populations, which was further functionally validated at the single-cell level. Next, the PK44 population could also be detected in the yolk sac, showing similar developmental dynamics and functional diversification with those in the AGM region. Importantly, PK44 cells in the yolk sac demonstrated an unambiguous multilineage reconstitution capacity after in vitro incubation. Regardless of the functional similarity, PK44 cells in the yolk sac displayed transcriptional features different from those in the AGM region. Taken together, our work delineates the spatiotemporal characteristics of HECs represented by PK44 and reveals a previously unknown HSC competence of HECs in the yolk sac. These findings provide a fundamental basis for in-depth study of the different origins and molecular programs of HSC generation in the future.

20.
Sci China Life Sci ; 64(12): 2073-2087, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34181164

RESUMEN

During embryogenesis, hematopoietic stem progenitor cells (HSPCs) are believed to be derived from hemogenic endothelial cells (HECs). Moreover, arterial feature is proposed to be a prerequisite for HECs to generate HSPCs with lymphoid potential. Although the molecular basis of hematopoietic stem cell-competent HECs has been delicately elucidated within the embryo proper, the functional and molecular characteristics of HECs in the extraembryonic yolk sac (YS) remain largely unresolved. In this study, we initially identified six molecularly different endothelial populations in the midgestational YS through integrated analysis of several single-cell RNA sequencing (scRNA-seq) datasets and validated the arterial vasculature distribution of Gja5+ ECs using a Gja5-EGFP reporter mouse model. Further, we explored the hemogenic potential of different EC populations based on their Gja5-EGFP and CD44 expression levels. The hemogenic potential was ubiquitously detected in spatiotemporally different vascular beds on embryonic days (E)8.5-E9.5 and gradually concentrated in CD44-positive ECs from E10.0. Unexpectedly, B-lymphoid potential was detected in the YS ECs as early as E8.5 regardless of their arterial features. Furthermore, the capacity for generating hematopoietic progenitors with in vivo lymphoid potential was found in nonarterial as well as arterial YS ECs on E10.0-E10.5. Importantly, the distinct identities of E10.0-E10.5 HECs between YS and intraembryonic caudal region were revealed by further scRNA-seq analysis. Cumulatively, these findings extend our knowledge regarding the hemogenic potential of ECs from anatomically and molecularly different vascular beds, providing a theoretical basis for better understanding the sources of HSPCs during mammalian development.


Asunto(s)
Hemangioblastos/fisiología , Células Madre Hematopoyéticas/fisiología , Saco Vitelino/irrigación sanguínea , Animales , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...