Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(5): 1032-1043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38286833

RESUMEN

It is well established that the synthesis of extracellular matrix (ECM) in mesangial cells is a major determinant of diabetic kidney disease (DKD). Elucidating the major players in ECM synthesis may be helpful to provide promising candidates for protecting against DKD progression. tRF3-IleAAT is a tRNA-derived fragment (tRF) produced by nucleases at tRNA-specific sites, which is differentially expressed in the sera of patients with diabetes mellitus and DKD. In this study we investigated the potential roles of tRFs in DKD. Db/db mice at 12 weeks were adapted as a DKD model. The mice displayed marked renal dysfunction accompanied by significantly reduced expression of tRF3-IleAAT and increased ferroptosis and ECM synthesis in the kidney tissues. The reduced expression of tRF3-IleAAT was also observed in high glucose-treated mouse glomerular mesangial cells. We administered ferrostatin-1 (1 mg/kg, once every two days, i.p.) to the mice from the age of 12 weeks for 8 weeks, and found that inhibition of the onset of ferroptosis significantly improved renal function, attenuated renal fibrosis and reduced collagen deposition. Overexpression of tRF3-IleAAT by a single injection of AAV carrying tRF3-IleAAT via caudal vein significantly inhibited ferroptosis and ECM synthesis in DKD model mice. Furthermore, we found that the expression of zinc finger protein 281 (ZNF281), a downstream target gene of tRF3-IleAAT, was significantly elevated in DKD models but negatively regulated by tRF3-IleAAT. In high glucose-treated mesangial cells, knockdown of ZNF281 exerted an inhibitory effect on ferroptosis and ECM synthesis. We demonstrated the targeted binding of tRF3-IleAAT to the 3'UTR of ZNF281. In conclusion, tRF3-IleAAT inhibits ferroptosis by targeting ZNF281, resulting in the mitigation of ECM synthesis in DKD models, suggesting that tRF3-IleAAT may be an attractive therapeutic target for DKD.


Asunto(s)
Nefropatías Diabéticas , Matriz Extracelular , Ferroptosis , Animales , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Nefropatías Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Humanos , Células Mesangiales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...