Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Comput Biol Med ; 174: 108457, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599071

RESUMEN

Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilación de ADN/genética , Glioma/inmunología , Glioma/genética , Glioma/metabolismo
3.
Am J Cancer Res ; 14(3): 1139-1156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590399

RESUMEN

Glioma, the most common primary malignant brain tumor, is characterized by infiltrating immune cells that contribute to tumor progression and therapeutic resistance. Tumor-associated macrophages (TAMs) constitute a significant proportion of these infiltrating immune cells and have been implicated in glioma progression. However, the underlying molecular mechanisms by which TAMs promote glioma progression remain elusive. In this study, we investigated the role of PU.1, a crucial transcription factor involved in myeloid cell development, in glioma-associated macrophage polarization and activation. First, bioinformatics and analysis of clinical glioma samples demonstrated a positive correlation between PU.1 expression in TAMs and disease severity. Further experiments using in vitro coculture systems revealed that the expression of PU.1 is increased in glioma cells vs. control cells. Importantly, PU.1-overexpressing macrophages exhibited a protumorigenic phenotype characterized by enhanced migration, invasion, and proliferation. Mechanistically, we found that PU.1-induced activation of the Bruton tyrosine kinase (BTK) signaling pathway led to Akt/mTOR pathway activation in macrophages, which further enhanced their protumorigenic functions. Furthermore, pharmacological inhibition of the BTK or Akt/mTOR pathway reversed the protumorigenic effects of macrophages in vitro and impaired their ability to promote glioma progression in vivo. In conclusion, our study elucidates a novel mechanism by which PU.1 induces the polarization and activation of TAMs in the glioma microenvironment. We highlight the significance of BTK-mediated Akt/mTOR pathway activation in driving the protumorigenic functions of TAMs. Targeting PU.1 and its downstream signaling pathways in TAMs may provide a promising therapeutic strategy to suppress glioma progression and improve patient outcomes.

5.
Cancer Med ; 12(24): 22170-22184, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38093622

RESUMEN

OBJECTIVE: As a single-transmembrane protein of the FXYD family, FXYD6 plays different roles under physiological and pathological status, especially in the nervous system. This study aims to identify FXYD6 as a biomarker for glioma, by analyzing its expression and methylation patterns. METHODS: Using TCGA and GTEx datasets, we analyzed FXYD6 expression in various tissues, confirming its levels in normal brain and different glioma grades via immunoblotting and immunostaining. FXYD6 biological functions were explored through enrichment analysis, and tumor immune infiltration was assessed using ESTIMATE and TIMER algorithms. Pearson correlation analysis probed FXYD6 associations with biological function-related genes. A glioma detection model was developed using FXYD6 methylation data from TCGA and GEO. Consistently, a FXYD6 methylation-based prognostic model was constructed for glioma via LASSO Cox regression. RESULTS: FXYD6 was observed to be downregulated in GBM and implicated in a range of cellular functions, including synapse formation, cell junctions, immune checkpoint, ferroptosis, EMT, and pyroptosis. Hypermethylation of specific FXYD6 CpG sites in gliomas was identified, which could be used to build a diagnostic model. Additionally, FXYD6 methylation-based prognostic model could serve as an independent factor as well. CONCLUSIONS: FXYD6 is a promising biomarker for the diagnosis and prognosis of glioma, with its methylation-based prognostic model serving as an independent factor. This highlights its potential in clinical application for glioma management.


Asunto(s)
Metilación de ADN , Glioma , Humanos , Biomarcadores , Glioma/diagnóstico , Glioma/genética , Algoritmos , Encéfalo , Pronóstico , Canales Iónicos
6.
Gut Microbes ; 15(2): 2263934, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37795995

RESUMEN

As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRß repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRß clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Fusobacterium nucleatum , Biomarcadores , Mutación , Receptores de Antígenos de Linfocitos T/genética
7.
Biotechnol J ; 18(8): e2300091, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37182226

RESUMEN

Accumulation of intracellular lipid bodies in oleaginous yeast cells is highly restricted by their natural intracellular space. Here we show a cellulase mediated adaptive evolution with ultra-centrifugation fractionation of oleaginous yeast Trichosporon cutaneum to obtain the favorable cell structure for lipid accumulation. Cellulase was added to the wheat straw hydrolysate during long-term adaptive evolution for disruption of cell wall integrity of T. cutaneum cells. The cellulase, together with ultracentrifugation force, triggered multiple mutations and transcriptional expression changes of the functional genes associated with cell wall integrity and lipid synthesis metabolism. The fractionated mutant T. cutaneum YY52 demonstrated the heavily weakened cell wall and high lipid accumulation by the super-large expanded spindle cells (two orders of magnitude greater than the parental). A record-high lipid production by T. cutaneum YY52 was achieved (55.4 ± 0.5 g L-1 from wheat straw and 58.4 ± 0.1 g L-1 from corn stover). This study not only obtained an oleaginous yeast strain with industrial application potential for lipid production but also provided a new method for generation of mutant cells with high intracellular metabolite accumulation.


Asunto(s)
Celulasa , Trichosporon , Trichosporon/genética , Trichosporon/metabolismo , Celulasa/genética , Celulasa/metabolismo , Lípidos , Mutación
8.
Front Pharmacol ; 14: 1116558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063268

RESUMEN

Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.

9.
Transl Psychiatry ; 13(1): 17, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36670104

RESUMEN

Autism spectrum disorder (ASD) is a complex behavioral disorder diagnosed by social interaction difficulties, restricted verbal communication, and repetitive behaviors. Fecal microbiota transplantation (FMT) is a safe and efficient strategy to adjust gut microbiota dysbiosis and improve ASD-related behavioral symptoms, but its regulatory mechanism is unknown. The impact of the microbiota and its functions on ASD development is urgently being investigated to develop new therapeutic strategies for ASD. We reconstituted the gut microbiota of a valproic acid (VPA)-induced autism mouse model through FMT and found that ASD is in part driven by specific gut dysbiosis and metabolite changes that are involved in the signaling of serotonergic synapse and glutamatergic synapse pathways, which might be associated with behavioral changes. Further analysis of the microbiota showed a profound decrease in the genera Bacteroides and Odoribacter, both of which likely contributed to the regulation of serotonergic and glutamatergic synapse metabolism in mice. The engraftment of Turicibacter and Alistipes was also positively correlated with the improvement in behavior after FMT. Our results suggested that successful transfer of the gut microbiota from healthy donors to ASD mice was sufficient to improve ASD-related behaviors. Modulation of gut dysbiosis by FMT could be an effective approach to improve ASD-related behaviors in patients.


Asunto(s)
Trastorno del Espectro Autista , Ratones , Animales , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/terapia , Trastorno del Espectro Autista/metabolismo , Trasplante de Microbiota Fecal , Ácido Valproico , Disbiosis/inducido químicamente , Disbiosis/terapia , Transducción de Señal
10.
Front Bioeng Biotechnol ; 10: 1020020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185433

RESUMEN

Therapeutic bacteria have shown great potential on anti-tumor therapy. Compared with traditional therapeutic strategy, living bacteria present unique advantages. Bacteria show high targeting and great colonization ability in tumor microenvironment with hypoxic and nutritious conditions. Bacterial-medicated antitumor therapy has been successfully applied on mouse models, but the low therapeutic effect and biosafe limit its application on clinical treatment. With the development of material science, coating living bacteria with suitable materials has received widespread attention to achieve synergetic therapy on tumor. In this review, we summarize various materials for coating living bacteria in cancer therapy and envision the opportunities and challenges of bacteria-medicated antitumor therapy.

11.
Biotechnol Bioeng ; 119(6): 1509-1521, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35165884

RESUMEN

Microbial lipid production from lignocellulose biomass provides an essential option for sustainable and carbon-neutral supply of future aviation fuels, biodiesel, as well as various food and nutrition products. Oleaginous yeast is the major microbial cell factory but its lipid-producing performance is far below the requirements of industrial application. Here we show an ultra-centrifugation fractionation in adaptive evolution (UCF) of Trichosporon cutaneum based on the minor cell density difference. The lightest cells with the maximum intracellular lipid content were isolated by ultra-centrifugation fractionation in the long-term adaptive evolution. Significant changes occurred in the cell morphology with a fragile cell wall wrapping and enlarged intracellular space (two orders of magnitude increase in cell size). Complete and coordinate assimilations of all nonglucose sugars derived from lignocellulose were triggered and fluxed into lipid synthesis. Genome mutations and significant transcriptional regulations of the genes responsible for cell structure were identified and experimentally confirmed. The obtained T. cutaneum MP11 cells achieved a high lipid production of wheat straw, approximately five-fold greater than that of the parental cells. The study provided an effective method for screening the high lipid-containing oleaginous yeast cells as well as the intracellular products accumulating cells in general.


Asunto(s)
Basidiomycota , Trichosporon , Biomasa , Centrifugación , Lípidos , Trichosporon/genética
12.
Adv Sci (Weinh) ; 9(1): e2104006, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713621

RESUMEN

Despite immunosuppression is critical for reducing immune overactivation, existing immunosuppressive agents are largely restricted by low inhibition efficiencies and unpredictable off-target toxicities. Here, the use of the dopaminergic system is reported to suppress hyperactive immune responses in local inflamed tissues. A polydopamine nanoparticular immunosuppressant (PDNI) is synthesized to stimulate regulatory T (Treg) cells and directly inhibit T helper 1 (Th1), Th2, and Th17 cells. Moreover, PDNI can inhibit the activation of dendritic cells to upregulate the ratio of Treg/Th17, which assists the reversion of inflammatory responses. The application of dopaminergic immunoregulation is further disclosed by combining with gut microbiota modulation for treating inflammations. The combination is implemented by coating living beneficial bacteria with PDNI. Following oral delivery, coated bacteria not only suppress the hyperactive immune responses but also positively modulate the gut microbiome in mice characterized with colitis. Strikingly, the combination demonstrates enhanced treatment efficacies in comparison with clinical aminosalicylic acid in two murine models of colitis. The use of the dopaminergic system opens a window to intervene immune responses and provides a versatile platform for the development of new therapeutics for treating inflammatory diseases.


Asunto(s)
Colitis/inmunología , Colon/inmunología , Indoles/inmunología , Inflamación/inmunología , Mucosa Intestinal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Nanopartículas , Polímeros
13.
Small ; 17(37): e2101810, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34365713

RESUMEN

Disorders in the gut microbiota have been implicated in various diseases, such as inflammatory bowel diseases, diabetes, and cancers. Oral microecologics are of great importance due to their ability to directly intervene the gut microbiome as well as their noninvasiveness and low side effects, while have suffered from low bioavailability and a single therapeutic effect. Here, probiotics are coated with a therapeutic nanocoating for synergistically enhanced biotherapy, a method inspired by the robust protective and therapeutic effectiveness of silkworm cocoon. With its transition from a random coil to ß-sheet conformation, silk fibroin can self-assemble onto the surface of bacteria. By a simple layer-by-layer procedure, an entire nanocoating can be formed along with a near quantitative coating ratio and almost uninfluenced bacterial viability. Thanks to its protective barrier role and innate pharmaceutical activity, silk fibroin nanocoating endows the coated bacteria with a markedly improved survival against gastric insults and a synergistically enhanced therapeutic effect in a murine model of intestinal mucositis. This work demonstrates how therapeutic elements can be combined with probiotics via a simple coating strategy and proposes an alternative to enhance bioavailability and treatment efficacy of oral microecologics.


Asunto(s)
Bombyx , Fibroínas , Animales , Bacterias , Terapia Biológica , Ratones , Viabilidad Microbiana
14.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33980483

RESUMEN

Methods capable of maintaining gut microbiota homeostasis to prevent bacterial translocation and infection under external threats are critical for multiple facets of human health but have been rarely reported. Here, we describe the elicitation of mucosal immunity to modulate the gut microbiota by oral delivery of living probiotics into Peyer's patches. Probiotics are individually camouflaged within a yeast membrane, on which the embedded ß-glucan can facilitate the phagocytosis of microfold cells that locate in the intestinal epithelium. The delivery of probiotics into lymphoid follicles after oral ingestion promotes robust mucosal immune responses and notably upgrades the production of secretory immunoglobulin A. The provoked immunity positively regulates the gut microflora, which, in turn, retains gut homeostasis and provides defense against environmental attacks. In two murine models of gut barrier impairment, oral administration with camouflaged probiotics effectively prevents the breakdown of intestinal barrier and evidences limited bacterial translocation and systemic inflammation.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Humanos , Inmunidad Mucosa , Mucosa Intestinal , Ratones , Ganglios Linfáticos Agregados/microbiología
15.
Adv Mater ; 33(13): e2007379, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33629757

RESUMEN

Surface decoration of living cells by exogenous substances offers a unique tool for understanding and tuning cell behaviors, which plays a critical role in cell-based therapy. Here, a facile yet versatile approach for decorating individual living cells with multimodal coatings is reported. By simply co-depositing with dopamine under a cytocompatible condition, various functional small molecules and polymers can be encoded to form a multifunctional coating on a cell's surface. The accessibility and versatility of this method to decorate diverse cells, including bacteria, fungi, and mammalian cells is demonstrated. With the ability to tune surface functions, ligand co-deposited gut microbiota is prepared as oral therapeutics for targeted treatment of colitis. Given the dual cytoprotective and targeting effects of the coating, decorated cells show more than 30-times higher bioavailability in the gut and fourfold higher accumulation in the inflamed tissue in comparison with those of uncoated bacteria. Multimodal therapeutic cells further validate strikingly increased treatment efficacy over clinical aminosalicylic acid in colitis mice. Decorating with multifunctional coatings proposes a robust platform for developing multimodal cells for enhanced cell-based therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Polimerizacion , Animales , Supervivencia Celular , Ratones
16.
Cell Death Dis ; 10(10): 717, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558707

RESUMEN

Accumulating evidence indicates long noncoding RNAs (lncRNA) play a vital role in tumor progression. However, the role of linc00645-induced accelerated malignant behavior in glioblastoma (GBM) remains unknown. In the present study, linc00645 expression was significantly upregulated in GBM tissues and cell lines. High level of linc00645 was associated with poor overall survival in GBM patients. Knockdown of linc00645 suppressed the proliferation, stemness, migration, invasion, and reversed transforming growth factor (TGF)-ß-induced motility of glioma cell lines. Furthermore, linc00645 directly interacted with miR-205-3p and upregulated of miR-205-3p impeded efficiently the increase of ZEB1 induced by linc00645 overexpression. Moreover, knockdown of linc00645 significantly suppressed the progression of glioma cells in vivo. miR-205-3p was a target of linc00645 and linc00645 modulates TGF-ß-induced glioma cell migration and invasion via miR-205-3p. Taken together, our findings identified the linc00645/miR-205-3p/ZEB1 signaling axis as a key player in EMT of glioma cells triggered by TGF-ß. These data elucidated that linc00645 plays an oncogenic role in glioma and it may serve as a prognostic biomarker and a potential therapeutic target for the treatment of glioma in humans.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Glioblastoma/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Bases de Datos Genéticas , Transición Epitelial-Mesenquimal/genética , Femenino , Ontología de Genes , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/secundario , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/farmacología , Trasplante Heterólogo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
17.
Bioresour Technol ; 289: 121623, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31202178

RESUMEN

Gluconobacter oxydans is capable of oxidizing various lignocellulose derived sugars into the corresponding sugar acids including glucose, xylose, arabinose, galactose and mannose, but simultaneous utilization of these sugars is difficult. This study attempted an adaptive evolution of G. oxydans by alternate transfer in inhibitors containing hydrolysate and inhibitors free hydrolysate for intensifying sugars simultaneous utilization. After 420 days' continuous culture, the conversion rate of all non-glucose sugars significantly improved by several folds and achieved complete conversion of lignocellulose-derived sugars to the corresponding sugar acids. The significant up-regulation of mGDH gene in the adapted G. oxydans strain (more than 40-fold greater than the parental) was considered as the decisive factor for the improvement of strain performance. This evolution adaptation strategy also could be used to accelerate robust sugars utilization for other fermented strains in lignocellulose biorefinery.


Asunto(s)
Gluconobacter oxydans , Biomasa , Glucosa , Lignina , Azúcares
18.
Bioresour Technol ; 264: 395-399, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29958773

RESUMEN

Simultaneous saccharification and fermentation (SSF) is an efficient fermentation operation in lignocellulose biorefining. However, SSF may not be applicable when the pH values of hydrolysis and fermentation do not match, or the strong intermediate inhibitors on cellulase activity are generated. This study proposed a cascade hydrolysis and fermentation (CHF) process for cellulosic gluconic acid fermentation to overcome the inhibition of the intermediate glucono-γ-lactone on cellulase activity. The pretreated and detoxified corn stover feedstock was enzymatically hydrolyzed into hydrolysate slurry, then gluconic acid and xylonic acid fermentations were directly conducted by inoculating Gluconobacter oxydans strain without solid/liquid separation. The sugar loss and energy consumption were effectively avoided by moving the solid/liquid separation into the fermentation stage. The experiments and the techno-economic analysis show that the CHF is simple and cost effective fermentation operation when SSF is not applicable.


Asunto(s)
Gluconatos , Gluconobacter oxydans/metabolismo , Zea mays/metabolismo , Ácidos , Etanol , Fermentación , Hidrólisis
19.
Bioresour Technol ; 253: 72-78, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29331516

RESUMEN

Simultaneous saccharification and fermentation (SSF) is the most efficient operation in biorefining conversion, but aerobic SSF under high solids loading significantly faces the serious oxygen transfer limitation. This study took the first insight into an aerobic SSF by high oxygen demanding filamentous fungi in highly viscous lignocellulose hydrolysate. The results show that oxygen requirement in the aerobic SSF by Aspergillus niger was well satisfied for production of cellulosic citric acid. The record high citric acid titer of 136.3 g/L and the overall conversion yield of 74.9% of cellulose were obtained by the aerobic SSF. The advantage of SSF to the separate hydrolysis and fermentation (SHF) on citric acid fermentation was compared based on the rigorous Aspen Plus modeling. The techno-economic analysis indicates that the minimum citric acid selling price (MCSP) of $0.603 per kilogram by SSF was highly competitive with the commercial citric acid from starch feedstock.


Asunto(s)
Aspergillus niger , Celulosa Oxidada , Ácido Cítrico , Etanol , Fermentación , Hidrólisis
20.
Bioresour Technol ; 244(Pt 1): 1188-1192, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28844838

RESUMEN

Non-glucose sugars derived from lignocellulose cover approximately 40% of the total carbohydrates of lignocellulose biomass. The conversion of the non-glucose sugars to the target products is an important task of lignocellulose biorefining research. Here we report a fast and complete conversion of the total non-glucose sugars from corn stover into the corresponding sugar acids by whole cell catalysis and aerobic fermentation of Gluconobacter oxydans. The conversions include xylose to xylonate, arabinose to arabonate, mannose to mannonate, and galactose to galactonate, as well as with glucose into gluconate. These cellulosic non-glucose sugar acids showed the excellent cement retard setting property. The mixed cellulosic sugar acids could be used as cement retard additives without separation. The conversion of the non-glucose sugars not only makes full use of lignocellulose derived sugars, but also effectively reduces the wastewater treatment burden by removal of residual sugars.


Asunto(s)
Gluconobacter oxydans , Lignina , Fermentación , Glucosa , Azúcares Ácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...