Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mater Sci ; 16(1): 220589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228892

RESUMEN

Human body temperature not only reflects vital signs, but also affects the state of various organs through blood circulation, and even affects lifespan. Here a wireless body temperature detection scheme was presented that the temperature was extracted by investigating the out-of-plane (OP) ferromagnetic resonance (FMR) field of 10.2 nm thick La0.7Sr0.3MnO3 (LSMO) film using electron paramagnetic resonance (EPR) technique. Within the range of 34-42 °C, the OP FMR field changes linearly with the increasing or decreasing temperature, and this variation comes from the linear responses of magnetization to the fluctuant temperature. Using this method, a tiny temperature change (< 0.1 °C) of organisms can be detected accurately and sensitively, which shows great potential in body temperature monitoring for humans and mammals.

2.
ACS Appl Mater Interfaces ; 11(24): 21727-21733, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31119933

RESUMEN

Mechanical flexible electronic/spintronic devices have shown enormous application potential to impact our daily life. Here, an in situ low-voltage-controlled flexible field-effect transistor structure was exploited, which consists of a support layer (mica), functional layer (Fe3O4), and control layer (ionic gel). By applying a low voltage (1.5 V) on the ionic gel, the spin-dynamic properties of the function layer were manipulated and a reversible, nonvolatile 345 Oe ferromagnetic resonance field ( Hr) shift was achieved, which corresponds to a large magnetoelectric (ME) coefficient of 230 Oe/V. In addition, a reversible 126 Oe Hr shift (84 Oe/V) was obtained when the layers were bent at curvature radius r = 15 mm. The ME tunability could be attributed to the E-field induced ionic transformation between Fe2+ and Fe3+ at the interface via electrostatic induction. This sandwich structure shows an excellent and effective ionic gel gating system and paves the way for low-voltage-tunable, nonvolatile, and flexible spintronic devices such as memory devices, sensors, and logical devices.


Asunto(s)
Electrónica/métodos , Óxido Ferrosoférrico/química , Membranas Artificiales , Dispositivos Electrónicos Vestibles , Imanes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA