Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 2): 127886, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926301

RESUMEN

Dye pollution in the aquatic environment can harm ecosystems and human health. Here, we developed a new green adsorbent by applying an improved drying process. Diatomite was embedded in a network structure formed between chitosan and polyvinyl alcohol without using any crosslinking agent to prepare chitosan-polyvinyl alcohol-diatomite hydrogel beads through alkali solidification. The beads were tested for removing a cationic dye (methylene blue (MB)) from water. The structure of the adsorbent beads was analysed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The adsorption capacity was investigated, and the results indicated excellent MB adsorption properties. The adsorbents had a rough surface and high swelling capacity of 66.9 g/g. The maximum MB adsorption capacity was 414.70 mg/g, and the adsorption followed the Freundlich isothermal and quasi-second-order kinetic models. The adsorption was an endothermic spontaneous process governed by both intra-particle and external diffusion processes. The proposed adsorption mechanisms involved hydrogen bonding and electrostatic interactions. These adsorbent beads have considerable application potentials owing to their high adsorption capacity, green composition, and non-polluting nature.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Alcohol Polivinílico , Azul de Metileno/química , Quitosano/química , Agua/química , Ecosistema , Purificación del Agua/métodos , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Hidrogeles , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
2.
Membranes (Basel) ; 13(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37103842

RESUMEN

Oil-water emulsions are types of wastewater that are difficult to treat. A polyvinylidene fluoride hydrophobic matrix membrane was modified using a hydrophilic polymer, poly(vinylpyrrolidone-vinyltriethoxysilane), to form a representative Janus membrane with asymmetric wettability. The performance parameters of the modified membrane, such as the morphological structure, the chemical composition, the wettability, the hydrophilic layer thickness, and the porosity, were characterized. The results showed that the hydrolysis, migration, and thermal crosslinking of the hydrophilic polymer in the hydrophobic matrix membrane contributed to an effective hydrophilic layer on the surface. Thus, a Janus membrane with unchanged membrane porosity, a hydrophilic layer with controllable thickness, and hydrophilic/hydrophobic layer "structural integration" was successfully prepared. The Janus membrane was used for the switchable separation of oil-water emulsions. The separation flux of the oil-in-water emulsions on the hydrophilic surface was 22.88 L·m-2·h-1 with a separation efficiency of up to 93.35%. The hydrophobic surface exhibited a separation flux of 17.45 L·m-2·h-1 with a separation efficiency of 91.47% for the water-in-oil emulsions. Compared to the lower flux and separation efficiency of purely hydrophobic and hydrophilic membranes, the Janus membrane exhibited better separation and purification effects for both oil-water emulsions.

3.
Membranes (Basel) ; 13(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984642

RESUMEN

Oil/water mixtures from industrial and domestic wastewater adversely affect the environment and human beings. In this context, the development of a facile and improved separation method is crucial. Herein, dopamine was used as a bioadhesive to bind tea polyphenol (TP) onto the surface of a polyvinylidene fluoride (PVDF) membrane to form the first hydrophilic polymer network. Sodium periodate (NaIO4) is considered an oxidising agent for triggering self-polymerisation and can be used to introduce hydrophilic groups via surface manipulation to form the second hydrophilic network. In contrast to the individual polydopamine (PDA) and TP/NaIO4 composite coatings for a hydrophobic PVDF microfiltration membrane, a combination of PDA, TP, and NaIO4 has achieved the most facile treatment process for transforming the hydrophobic membrane into the hydrophilic state. The hierarchical superhydrophilic network structure with a simultaneous underwater superoleophobic membrane exhibited excellent performance in separating various oil-in-water emulsions, with a high water flux (1530 L.m-2 h-1.bar) and improved rejection (98%). The water contact angle of the modified membrane was 0° in 1 s. Moreover, the steady polyphenol coating was applied onto the surface, which endowed the membrane with an adequate antifouling and recovery capability and a robust durability against immersion in an acid, alkali, or salt solution. This facile scale-up method depends on in situ plant-inspired chemistry and has remarkable potential for practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA