Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 341: 122346, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876716

RESUMEN

This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy.

2.
Inorg Chem ; 61(17): 6547-6554, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35447028

RESUMEN

The toxicity of the Pb element limits the large-scale application of inorganic cesium-lead halide (CsPbX3, with X = Cl, Br, and I) perovskite nanocrystals (NCs). Pb-free cesium-tin halide (CsSnX3) NCs have emerged as a viable alternative because of its excellent photoelectric conversion efficiency. However, the applications are hampered by its poor stability and low photoluminescence quantum yield (PLQY). In this study, extraordinarily stable CsSnCl3 NCs were prepared by exploiting bone gelatin as surface capping agents, which retain 95% of the photoluminescence intensity in water for 55 h. Additionally, after bone gelatin encapsulation, the PLQY of CsSnCl3 NCs was found to increase from 2.17% to 3.13% for the uncapped counterparts because of an improved radiative recombination rate. With such remarkable optical properties of the bone gelatin-CsSnCl3 NCs, metal ions like Fe3+ in aqueous solutions can be readily detected and monitored, signifying the potential application of such stable bone gelatin-CsSnCl3 NCs in the development of fluorescence sensors and detectors.


Asunto(s)
Gelatina , Nanopartículas , Compuestos de Calcio , Cesio , Óxidos , Titanio , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA