Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 21(1): 18, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650517

RESUMEN

The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.


Asunto(s)
Curcumina , Estructuras Metalorgánicas , Osteoartritis , Humanos , Curcumina/farmacología , Condrocitos/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/metabolismo , Concentración de Iones de Hidrógeno
2.
ACS Appl Mater Interfaces ; 15(2): 2602-2616, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36622638

RESUMEN

To improve the efficiency of radiation therapy (RT) for breast cancer, a designable multifunctional core-shell nanocomposite of FeP@Pt is constructed using Fe(III)-polydopamine (denoted as FeP) as the core and platinum particles (Pt) as the shell. The hybrid structure is further covered with hyaluronic acid (HA) to give the final nanoplatform of FeP@Pt@HA (denoted as FPH). FPH exhibits good biological stability, prolongs blood circulation time, and is simultaneously endowed with tumor-targeting ability. With CD44-mediated endocytosis of HA, FPH can be internalized by cancer cells and activated by the tumor microenvironment (TME). The redox reaction between Fe3+ in FPH and endogenous glutathione (GSH) or/and hydrogen peroxide (H2O2) initiates ferroptosis therapy by promoting GSH exhaustion and •OH generation. Moreover, FPH has excellent photothermal conversion efficiency and can absorb near-infrared laser energy to promote the above catalytic reaction as well as to achieve photothermal therapy (PTT). Ferroptosis therapy and PTT are further accompanied by the catalase activity of Pt nanoshells to accelerate O2 production and the high X-ray attenuation coefficient of Pt for enhanced radiotherapy (RT). Apart from the therapeutic modalities, FPH exhibits dual-modal contrast enhancement in infrared (IR) thermal imaging and computed tomography (CT) imaging, offering potential in imaging-guided cancer therapy. In this article, the nanoplatform can remodel the TME through the production of O2, GSH- and H2O2-depletion, coenhanced PTT, ferroptosis, and RT. This multimodal nanoplatform is anticipated to shed light on the design of TME-activatable materials to enhance the synergism of treatment results and enable the establishment of efficient nanomedicine.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Microambiente Tumoral , Femenino , Humanos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Terapia Combinada/métodos , Compuestos Férricos/uso terapéutico , Peróxido de Hidrógeno , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Microambiente Tumoral/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico
3.
ACS Biomater Sci Eng ; 8(8): 3361-3376, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35819069

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory type of arthritis that causes joint pain and damage. The inflammatory cell infiltration (e.g., M1 macrophages), the poor O2 supply at the joint, and the excess reactive oxygen species (ROS)-induced oxidative injury are the main causes of RA. We herein report a polydopamine (PDA)-coated CeO2-dopped zeolitic imidazolate framework-8 (ZIF-8) nanocomposite CeO2-ZIF-8@PDA (denoted as CZP) that can synergistically treat RA. Under near-infrared (NIR) light irradiation, PDA efficiently scavenges ROS and results in an increased temperature in the inflamed area because of its good light-to-heat conversion efficiency. The rise of temperature serves to obliterate hyper-proliferative inflammatory cells accumulated in the diseased area while vastly promoting the collapse of the acidic-responsive skeleton of ZIF-8 to release the encapsulated CeO2. The released CeO2 exerts its catalase-like activity to relieve hypoxia by generating oxygen via the decomposition of H2O2 highly expressed in the inflammatory sites. Thus, the constructed CZP composite can treat RA through NIR-photothermal/ROS-scavenging/oxygen-enriched combinative therapy and show good regression of pro-inflammatory cytokines and hypoxia-inducible factor-1α (HIF-1α) in vitro and promising therapeutic effect on RA in rat models. The multimodal nano-platform reported herein is expected to shed light on the design of synergistic therapeutic nanomedicine for effective RA therapy.


Asunto(s)
Artritis Reumatoide , Zeolitas , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/terapia , Peróxido de Hidrógeno/efectos adversos , Concentración de Iones de Hidrógeno , Indoles , Oxígeno/efectos adversos , Polímeros , Ratas , Especies Reactivas de Oxígeno/efectos adversos
4.
J Nanobiotechnology ; 20(1): 212, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524270

RESUMEN

A multifunctional nanoplatform with core-shell structure was constructed in one-pot for the synergistic photothermal, photodynamic, and chemotherapy against breast cancer. In the presence of gambogic acid (GA) as the heat-shock protein 90 (HSP90) inhibitor and the gold nanostars (AuNS) as the photothermal reagent, the assembly of Zr4+ with tetrakis (4-carboxyphenyl) porphyrin (TCPP) gave rise to the nanocomposite AuNS@ZrTCPP-GA (AZG), which in turn, further coated with PEGylated liposome (LP) to enhance the stability and biocompatibility, and consequently the antitumor effect of the particle. Upon cellular uptake, the nanoscale metal - organic framework (NMOF) of ZrTCPP in the resulted AuNS@ZrTCPP-GA@LP (AZGL) could be slowly degraded in the weak acidic tumor microenvironment to release AuNS, Zr4+, TCPP, and GA to exert the synergistic treatment of tumors via the combination of AuNS-mediated mild photothermal therapy (PTT) and TCPP-mediated photodynamic therapy (PDT). The introduction of GA serves to reduce the thermal resistance of the cell to re-sensitize PTT and the constructed nanoplatform demonstrated remarkable anti-tumor activity in vitro and in vivo. Our work highlights a facile strategy to prepare a pH-dissociable nanoplatform for the effective synergistic treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Estructuras Metalorgánicas , Nanocompuestos , Fotoquimioterapia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Liposomas/uso terapéutico , Microambiente Tumoral , Xantonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...