Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 307(Pt 1): 135667, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35835236

RESUMEN

Although the toxicity of triclosan (TCS) and galaxolide (HHCB) in freshwater has been reported, little study is shed light on their molecular toxicity mechanism and the regulation of humic acid (HA). In this work, freshwater algae E. gracilis was selected to explore these processes, and the molecular toxicity mechanism was analyzed by metabolomics. TCS was more toxic to E. gracilis than HHCB at 1 d exposure with the EC50 value of 0.76 mg L-1, but HHCB showed a higher toxicity as the exposure time prolonged. HA could alleviate the toxicity of TCS and HHCB, mainly due to the inhibition of TCS uptake and oxidative stress, respectively. The perturbations on a number of antioxidant defense-related metabolites in response to TCS or HHCB also indicated oxidative stress was a main toxicity mechanism. However, the exposure to HHCB resulted in more pronounced perturbations in the purine metabolism than TCS, implying that HHCB may pose a genetic toxicity on algae. It may explain the higher toxicity of HHCB to algae as the exposure time increased. These findings provide a comprehensive understanding on the ecological risks of TCS or HHCB in natural waters.


Asunto(s)
Euglena gracilis , Triclosán , Contaminantes Químicos del Agua , Antioxidantes , Benzopiranos , Sustancias Húmicas , Purinas , Triclosán/análisis , Triclosán/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
J Hazard Mater ; 425: 127908, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34883377

RESUMEN

Microplastics (MPs) have received an increasing attention because of their ubiquitous presence and aquatic toxicity associated with MPs and MP-bound contaminants in the natural water. This review is to critically examine the chemical additives leached from MPs, the altered contaminant behaviors and the resulting changes in their aquatic ecotoxicity. Available data suggest that heavy metals Zn, Cr, Pb, and Cd regulated and present in plastics at the sub-mg g-1 to mg g-1 level can leach a significant amount depending on MPs size, aging, pH, and salinity conditions. MP-bound organic contaminants are primarily additive-derived (e.g., brominated diphenyl ethers, nonylphenol, and bisphenol A) at the µg g-1 to mg g-1 level, and secondarily pyrogenic and legacy origins (e.g., PAHs and PCBs) in the range of ng g-1 and mg g-1. MPs tend to have higher but more variable sorption capacities for organic compounds than metals (1.77 ± 2.34 vs. 0.82 ± 0.94 mg g-1). MPs alter the behavior of heavy metals through the electrostatic interactions and surface complexation, while the transport of additive derived organic compounds are altered primarily through hydrophobic effect as supported by a positive correlation (R2 = 0.71) between the logarithmic MPs-adsorbed concentrations and octanol/water partition coefficients (KOW) of organic compounds. MPs constitute less than 0.01% of the total mass of aquatic particulates in typical waters, but play a discernible role in the local partitioning and long-distance movement of contaminants. MPs alone exert higher toxicity to invertebrates than algae; however, when MPs co-occur with pollutants, both synergistic and antagonistic toxicities are observed depending mainly on the ingestibility of MPs, the extent of sorption, MPs as a transport vector or a sink to scavenge pollutants. We finally suggest several key areas of future research directions and needed data concerning the role of MPs in mitigating pollutant leaching, transport and risk under conditions mimicking natural and polluted waters.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Metales Pesados/toxicidad , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Chemosphere ; 290: 133311, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34919912

RESUMEN

Diclofenac (DCF) is a common pharmaceutical that widely distributed in natural waters, and has been received an increasing attention because of its potential toxicity. Additionally, microplastics are also ubiquitous pollutants in natural waters, but little information is available on their interactions. In this study, the sorption of DCF on polystyrene microplastics (PS MPs) with different particle sizes was investigated, and the influence of environmental factors was also explored. Results indicated that the pseudo-second-order kinetic model was suitable to describe the sorption process. The sorption capacity increased with the increase in particle size. The isotherms data for the sorption of DCF on 0.5 and 1 µm PS MPs were best fitted with the Dubinine-Radushkevich model, but the Freundlich and Langmuir models could best describe the sorption of DCF 5 and 20 µm PS MPs, respectively. It is suggested that the sorption was a chemisorption, which is also verified by Fourier transform infrared spectroscopy (FTIR) results. Furthermore, the sorption capacity decreased as pH increased, and increased as ionic strength increased. These findings give a new perspective that the microplastics with larger sizes hold promise for the treatment of DCF-contaminated water.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Diclofenaco , Cinética , Tamaño de la Partícula , Plásticos , Poliestirenos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...