Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(22): e2310005, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572525

RESUMEN

Inferior air stability is a primary barrier for large-scale applications of garnet electrolytes in energy storage systems. Herein, a deeply hydrated hydrogarnet electrolyte generated by a simple ion-exchange-induced phase transition from conventional garnet, realizing a record-long air stability of more than two years when exposed to ambient air is proposed. Benefited from the elimination of air-sensitive lithium ions at 96 h/48e sites and unobstructed lithium conduction path along tetragonal sites (12a) and vacancies (12b), the hydrogarnet electrolyte exhibits intrinsic air stability and comparable ion conductivity to that of traditional garnet. Moreover, the unique properties of hydrogarnet pave the way for a brand-new aqueous route to prepare lithium metal stable composite electrolyte on a large-scale, with high ionic conductivity (8.04 × 10-4 S cm-1), wide electrochemical windows (4.95 V), and a high lithium transference number (0.43). When applied in solid-state lithium batteries (SSLBs), the batteries present impressive capacity and cycle life (164 mAh g-1 with capacity retention of 89.6% after 180 cycles at 1.0C under 50 °C). This work not only designs a new sort of hydrogarnet electrolyte, which is stable to both air and lithium metal but also provides an eco-friendly and large-scale fabrication route for SSLBs.

2.
Small ; 19(29): e2207170, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37021723

RESUMEN

Electrochemical oxidization and thermodynamic instability agglomeration are a primary challenge in triggering metal-support interactions (MSIs) by immobilizing metal atoms on a carrier to achieve efficient oxygen evolution reactions (OER). Herein, Ru clusters anchored to the VS2 surface and the VS2 nanosheets embedded vertically in carbon cloth (Ru-VS2 @CC) are deliberately designed to realize high reactivity and exceptional durability. In situ Raman spectroscopy reveals that the Ru clusters are preferentially electro-oxidized to form RuO2 chainmail, both affording sufficient catalytic sites and protecting the internal Ru core with VS2 substrates for consistent MSIs. Theoretical calculations elucidate that electrons across the Ru/VS2 interface aggregate toward the electro-oxidized Ru clusters, while the electronic coupling of Ru 3p and O 2p orbitals boosts a positive shift in the Fermi energy level of Ru, optimizing the adsorption capacity of the intermediates and diminishing the migration barriers of the rate-determining steps. Therefore, the Ru-VS2 @CC catalyst demonstrated ultra-low overpotentials of 245 mV at 50 mA cm-2 , while the zinc-air battery maintained a narrow gap (0.62 V) after 470 h of reversible operation. This work has transformed the corrupt into the miraculous and paved a new way for the development of efficient electrocatalysts.

3.
Adv Mater ; 35(39): e2209876, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36639855

RESUMEN

The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.

4.
ACS Appl Mater Interfaces ; 14(40): 45373-45381, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36168214

RESUMEN

The pursuit of strong endurance and nonflammable performances has promoted demand for solid-state batteries (SSBs). Meanwhile, the reduction of electrolytes' thickness is the key to improving battery performance. However, a large-scale feasible method to fabricate an ultrathin solid electrolyte exhibiting high ionic conductivities is still a challenge. Here, we show a large-scale feasible method to prepare a succinonitrile/polyacrylonitrile(SN/PAN)-coated Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with flexibility and high ionic conductivity by tape-casting. The unique dual polymer-coated garnet electrolytes exhibit structural stability through mutual promotion, constructing soft interparticle contact that provides fast lithium-ion transfer channels. In essence, the mutual promotion mechanism is that SN can improve the Li+ conductivity of PAN, while PAN can protect SN from aggregation. Therefore, the flexible SN/PAN-coated LLZTO provides high structural stability and satisfactory electrochemical performance, contributing to a high ionic conductivity of 4 × 10-4 S cm-1 at room temperature (RT). In this way, a long lifespan of over 500 cycles and a high discharge capacity (163 mAh g-1) are achieved based on LiFePO4 (LFP) cathodes at 0.2 C.

5.
Nanoscale ; 12(12): 6785-6794, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167520

RESUMEN

Exploring oxygen electrodes with superior bifunctional catalytic activity and suitable architecture is an effective strategy to improve the performance of lithium-oxygen (Li-O2) batteries. Herein, the internal electronic structure of Ni2P is regulated by heteroatom Co doping to improve its catalytic activity for oxygen redox reactions. Meanwhile, magnetron sputtering N-doped carbon cloth (N-CC) is used as a scaffold to enhance the electrical conductivity. The deliberately designed Co-Ni2P on N-CC (Co-Ni2P@N-CC) with a typical 3D interconnected architecture facilitates the formation of abundant solid-liquid-gas three-phase reaction interfaces inside the architecture. Furthermore, the rational catalyst/substrate interfacial interaction is capable of inducing a solvation-mediated pathway to form toroidal-Li2O2. The results show that the Co-Ni2P@N-CC based Li-O2 battery exhibits an ultra-low overpotential (0.73 V), enhanced rate performance (4487 mA h g-1 at 500 mA g-1) and durability (stable operation over 671 h). The pouch-type battery based on the Co-Ni2P@N-CC flexible electrode runs stably for 581 min in air without obvious voltage attenuation. This work verifies that heterogeneous atom doping and interface interaction can remarkably strengthen the performance of Li-O2 cells and thus pave new avenues towards developing high-performance metal-air batteries.

6.
Nanoscale ; 12(3): 1864-1874, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31903471

RESUMEN

The degradation of oxygen electrodes caused by oxygen species in lithium-oxygen (Li-O2) batteries deteriorates their energy efficiency and cyclability and seriously hinders their commercial application. To achieve high energy efficiency and long-term cycle life, gradient-porous ultrathin FeCo2S4 nanosheets on Ni foam (FeCo2S4@Ni) were deliberately designed as a noncarbonaceous freestanding oxygen electrode for Li-O2 batteries. Notably, the gradient-porous structure in FeCo2S4@Ni can offer sufficient active sites as well as mitigate polarization caused by the mass transfer during discharge and charge. The synergistic effect of the two transition metals, Fe2+ and Co3+, optimizes their d-band electronic structure and enhances the intrinsic activity of the oxygen electrode. Benefiting from the above merits, the FeCo2S4@Ni based Li-O2 battery demonstrates greatly increased discharge capacity (8001 mA h g-1), improved rate capability (with a high capacity of 4401 mA h g-1 at 500 mA g-1), and enhanced cycling stability (with a low overpotential of below 1 V after 109 cycles). Our work demonstrates that the battery performance can be improved by regulating the structure and composition of the oxygen electrode and provides a promising strategy for developing high performance Li-O2 batteries.

7.
ACS Appl Mater Interfaces ; 11(50): 46696-46704, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31755689

RESUMEN

Catalysts with high performance are urgently needed in order to accelerate the reaction kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in lithium-oxygen (Li-O2) batteries. Herein, utilizing thermodynamically metastable Ti atoms on the Ti3C2Tx MXene nanosheet surface as the nucleation site, oxygen vacancy-rich TiO2 nanoparticles were in situ fabricated on Ti3C2Tx nanosheets (V-TiO2/Ti3C2Tx) and used as the oxygen electrode of Li-O2 batteries. Oxygen vacancy (Vo) can boost the migration rate of electrons and Li+ as well as act as the active sites for catalyzing the ORR and OER. Based on the above merits, V-TiO2/Ti3C2Tx-based Li-O2 battery shows improved performance including the ultralow overpotential of 0.21 V, high specific capacity of 11 487 mA h g-1 at a current density of 100 mA g-1, and excellent round-trip efficiency (93%). This work proposes an effective strategy for researching high-performance oxygen electrodes for Li-O2 batteries via introducing Vo-rich oxides on two-dimensional MXene.

8.
ACS Appl Mater Interfaces ; 11(4): 3834-3842, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30620172

RESUMEN

In this work, a novel free-standing CuCo2S4 nanosheet cathode (CuCo2S4@Ni) with high catalytic activity is fabricated for aprotic lithium-oxygen (Li-O2) battery. This deliberately designed oxygen electrode is found to yield lower overpotential (0.82 V), improved specific capacity (9673 mA h g-1 at 100 mA g-1), and enhanced cycle life (164 cycles) as compared to the traditional carbonaceous electrode. The improved performance can be ascribed to the superb spinel structure of CuCo2S4, in which both Cu and Co exhibit more abundant redox properties, improving oxygen reduction reaction and oxygen evolution reaction kinetics effectively and boosting the electrochemical reactions. Furthermore, the well-designed architecture also plays a critical role in the improved performance. Encouraged by the excellent catalytic activity of this free-standing cathode, large-scale pouch-type Li-O2 cell based on CuCo2S4@Ni cathode is fabricated and can work under different bending and twisting conditions. This free-standing electrode provides a new strategy for developing Li-O2 batteries with excellent performance and flexible wearable devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...