Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurogenetics ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023817

RESUMEN

Biallelic (autosomal recessive) pathogenic variants in ATP13A2 cause a form of juvenile-onset parkinsonism, termed Kufor-Rakeb syndrome. In addition to motor symptoms, a variety of other neurological and psychiatric symptoms may occur in affected individuals, including supranuclear gaze palsy and cognitive decline. Although psychotic symptoms are often reported, response to antipsychotic therapy is not well described in previous case reports/series. As such, we describe treatment response in an individual with Kufor-Rakeb syndrome-associated psychosis. His disease was caused by a homozygous novel loss-of-function ATP13A2 variant (NM_022089.4, c.1970_1975del) that was characterized in this study. Our patient exhibited a good response to quetiapine monotherapy, which he has so far tolerated well. We also reviewed the literature and summarized all previous descriptions of antipsychotic treatment response. Although its use has infrequently been described in Kufor-Rakeb syndrome, quetiapine is commonly used in other degenerative parkinsonian disorders, given its lower propensity to cause extrapyramidal symptoms. As such, quetiapine should be considered in the treatment of Kufor-Rakeb syndrome-associated psychosis when antipsychotic therapy is deemed necessary.

2.
Biochim Biophys Acta Gen Subj ; 1867(9): 130412, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348823

RESUMEN

The remarkable structural diversity of glycans that is exposed at the cell surface and generated along the secretory pathway is tightly regulated by several factors. The recent identification of human glycosylation diseases related to metal transporter defects opened a completely new field of investigation, referred to herein as "metalloglycobiology", on how metal changes can affect the glycosylation and hence the glycan structures that are produced. Although this field is in its infancy, this review aims to go through the different glycosylation steps/pathways that are metal dependent and that could be impacted by metal homeostasis dysregulations.


Asunto(s)
Glicómica , Glicosilación , Metales , Polisacáridos , Humanos , Proteínas de Transporte de Catión/metabolismo , Trastornos Congénitos de Glicosilación/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Glicómica/tendencias , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Homeostasis , Magnesio/química , Magnesio/metabolismo , Metales/química , Metales/metabolismo , Oxidación-Reducción , Polisacáridos/química , Polisacáridos/metabolismo , Zinc/química , Zinc/metabolismo
3.
Annu Rev Biochem ; 92: 435-464, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37018845

RESUMEN

The polyamines putrescine, spermidine, and spermine are abundant polycations of vital importance in mammalian cells. Their cellular levels are tightly regulated by degradation and synthesis, as well as by uptake and export. Here, we discuss the delicate balance between the neuroprotective and neurotoxic effects of polyamines in the context of Parkinson's disease (PD). Polyamine levels decline with aging and are altered in patients with PD, whereas recent mechanistic studies on ATP13A2 (PARK9) demonstrated a driving role of a disturbed polyamine homeostasis in PD. Polyamines affect pathways in PD pathogenesis, such as α-synuclein aggregation, and influence PD-related processes like autophagy, heavy metal toxicity, oxidative stress, neuroinflammation, and lysosomal/mitochondrial dysfunction. We formulate outstanding research questions regarding the role of polyamines in PD, their potential as PD biomarkers, and possible therapeutic strategies for PD targeting polyamine homeostasis.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Poliaminas/metabolismo , Neuroprotección , Espermidina/metabolismo , Mamíferos/metabolismo
4.
Biomolecules ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36830711

RESUMEN

Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure-activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.


Asunto(s)
Poliaminas , Espermidina , Animales , Poliaminas/metabolismo , Espermidina/metabolismo , Compuestos de Boro , Espermina/metabolismo , Putrescina/metabolismo , Transporte Biológico , Mamíferos/metabolismo , Colorantes Fluorescentes , Adenosina Trifosfatasas/metabolismo
5.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119354, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36064065

RESUMEN

Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking. Not surprisingly, dysregulated PA homeostasis and signaling are implicated in multiple disorders, ranging from cancer to neurodegeneration; leading many to propose rectifying the PA balance as a potential therapeutic strategy. Despite being well characterized in bacteria, fungi and plants, the molecular identity and properties of the PA transporters in animals are poorly understood. This review brings together the current knowledge of the cellular function of the mammalian PA transport system (PTS). We will focus on the role of P5B-ATPases ATP13A2-5 which are PA transporters in the endosomal system that have emerged as key players in cellular PA uptake and organelle homeostasis. We will discuss recent breakthroughs on their biochemical and structural properties as well as their implications for disease and therapy.


Asunto(s)
Adenosina Trifosfatasas , Poliaminas , Adenosina Trifosfatasas/metabolismo , Animales , Transporte Biológico , Endosomas/metabolismo , Mamíferos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Poliaminas/metabolismo
6.
Front Cell Dev Biol ; 10: 903953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693943

RESUMEN

Glycosylation is a ubiquitous and universal cellular process in all domains of life. In eukaryotes, many glycosylation pathways occur simultaneously onto proteins and lipids for generating a complex diversity of glycan structures. In humans, severe genetic diseases called Congenital Disorders of Glycosylation (CDG), resulting from glycosylation defects, demonstrate the functional relevance of these processes. No real cure exists so far, but oral administration of specific monosaccharides to bypass the metabolic defects has been used in few CDG, then constituting the simplest and safest treatments. Oral D-Galactose (Gal) therapy was seen as a promising tailored treatment for specific CDG and peculiarly for TMEM165-CDG patients. TMEM165 deficiency not only affects the N-glycosylation process but all the other Golgi-related glycosylation types, then contributing to the singularity of this defect. Our previous results established a link between TMEM165 deficiency and altered Golgi manganese (Mn2+) homeostasis. Besides the fascinating power of MnCl2 supplementation to rescue N-glycosylation in TMEM165-deficient cells, D-Gal supplementation has also been shown to be promising in suppressing the observed N-glycosylation defects. Its effect on the other Golgi glycosylation types, most especially O-glycosylation and glycosaminoglycan (GAG) synthesis, was however unknown. In the present study, we demonstrate the differential impact of D-Gal or MnCl2 supplementation effects on the Golgi glycosylation defects caused by TMEM165 deficiency. Whereas MnCl2 supplementation unambiguously fully rescues the N- and O-linked as well as GAG glycosylations in TMEM165-deficient cells, D-Gal supplementation only rescues the N-linked glycosylation, without any effects on the other Golgi-related glycosylation types. According to these results, we would recommend the use of MnCl2 for TMEM165-CDG therapy.

7.
Biol Rev Camb Philos Soc ; 97(2): 732-748, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34873817

RESUMEN

N-glycosylation is an important post-translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N-glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N-glycan processing and further describe recent findings regarding the diversity of N-glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N-glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N-glycosylation are highlighted, especially the regulation of the biosynthesis of complex-type N-glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.


Asunto(s)
Eucariontes , Aparato de Golgi , Retículo Endoplásmico/metabolismo , Eucariontes/genética , Glicosilación , Aparato de Golgi/metabolismo , Polisacáridos/metabolismo
8.
Med Sci (Paris) ; 36(8-9): 735-746, 2020.
Artículo en Francés | MEDLINE | ID: mdl-32821050

RESUMEN

Glycosylation is an essential and complex cellular process where monosaccharides are added one by one onto an acceptor molecule, most of the time a protein or a lipid, so called glycoprotein or glycolipid. This cellular process is found in every living organism and is tightly conserved during evolution. In human, if one of the glycosylation reactions is genetically impaired, Congenital Disorders of Glycosylation (CDG) appear. CDG are a growing family of more than a hundred genetic diseases. This review offers a panorama of CDGs from 1980 to the present, their discoveries, diagnoses and treatments.


TITLE: Anomalies congénitales de la glycosylation (CDG) - 1980-2020, 40 ans pour comprendre. ABSTRACT: La glycosylation est un processus cellulaire complexe conduisant à des transferts successifs de monosaccharides sur une molécule acceptrice, le plus souvent une protéine ou un lipide. Ce processus est universel chez tous les organismes vivants et est très conservé au cours de l'évolution. Chez l'homme, des perturbations survenant au cours d'une ou plusieurs réactions de glycosylation sont à l'origine de glycopathologies génétiques rares, appelées anomalies congénitales de la glycosylation ou congenital disorders of glycosylation (CDG). Cette revue propose de revisiter ces CDG, de 1980 à aujourd'hui, en présentant leurs découvertes, leurs diagnostics, leurs causes biochimiques et les traitements actuellement disponibles.


Asunto(s)
Trastornos Congénitos de Glicosilación , Animales , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/epidemiología , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/terapia , Estudios de Asociación Genética/historia , Estudios de Asociación Genética/tendencias , Pruebas Genéticas/historia , Pruebas Genéticas/métodos , Pruebas Genéticas/tendencias , Glicosilación , Historia del Siglo XX , Historia del Siglo XXI , Humanos
9.
J Inherit Metab Dis ; 43(2): 357-366, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31415112

RESUMEN

TMEM165 is involved in a rare genetic human disease named TMEM165-CDG (congenital disorders of glycosylation). It is Golgi localized, highly conserved through evolution and belongs to the uncharacterized protein family 0016 (UPF0016). The use of isogenic TMEM165 KO HEK cells was crucial in deciphering the function of TMEM165 in Golgi manganese homeostasis. Manganese is a major cofactor of many glycosylation enzymes. Severe Golgi glycosylation defects are observed in TMEM165 Knock Out Human Embryonic Kidney (KO HEK) cells and are rescued by exogenous manganese supplementation. Intriguingly, we demonstrate in this study that the observed Golgi glycosylation defect mainly depends on fetal bovine serum, particularly its manganese level. Our results also demonstrate that iron and/or galactose can modulate the observed glycosylation defects in TMEM165 KO HEK cells. While isogenic cultured cells are widely used to study the impact of gene defects on proteins' glycosylation patterns, these results emphasize the importance of the use of validated fetal bovine serum in glycomics studies.


Asunto(s)
Antiportadores/fisiología , Proteínas de Transporte de Catión/fisiología , Glicosilación/efectos de los fármacos , Manganeso/metabolismo , Albúmina Sérica Bovina/farmacología , Antiportadores/genética , Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Trastornos Congénitos de Glicosilación/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Transporte Iónico
10.
Biochem J ; 476(21): 3281-3293, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31652305

RESUMEN

TMEM165 was highlighted in 2012 as the first member of the Uncharacterized Protein Family 0016 (UPF0016) related to human glycosylation diseases. Defects in TMEM165 are associated with strong Golgi glycosylation abnormalities. Our previous work has shown that TMEM165 rapidly degrades with supraphysiological manganese supplementation. In this paper, we establish a functional link between TMEM165 and SPCA1, the Golgi Ca2+/Mn2+ P-type ATPase pump. A nearly complete loss of TMEM165 was observed in SPCA1-deficient Hap1 cells. We demonstrate that TMEM165 was constitutively degraded in lysosomes in the absence of SPCA1. Complementation studies showed that TMEM165 abundance was directly dependent on SPCA1's function and more specifically its capacity to pump Mn2+ from the cytosol into the Golgi lumen. Among SPCA1 mutants that differentially impair Mn2+ and Ca2+ transport, only the Q747A mutant that favors Mn2+ pumping rescues the abundance and Golgi subcellular localization of TMEM165. Interestingly, the overexpression of SERCA2b also rescues the expression of TMEM165. Finally, this paper highlights that TMEM165 expression is linked to the function of SPCA1.


Asunto(s)
Antiportadores/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Antiportadores/genética , Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , Proteínas de Transporte de Catión/genética , Citosol/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Manganeso/metabolismo , Mutación , Proteolisis , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
11.
Biochimie ; 165: 123-130, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31351090

RESUMEN

Since 2012, the interest for TMEM165 increased due to its implication in a rare genetic human disease named TMEM165-CDG (Congenital Disorder(s) of Glycosylation). TMEM165 is a Golgi localized protein, highly conserved through evolution and belonging to the uncharacterized protein family 0016 (UPF0016). Although the precise function of TMEM165 in glycosylation is still controversial, our results highly suggest that TMEM165 would act as a Golgi Ca2+/Mn2+ transporter regulating both Ca2+ and Mn2+ Golgi homeostasis, the latter is required as a major cofactor of many Golgi glycosylation enzymes. Strikingly, we recently demonstrated that besides its role in regulating Golgi Mn2+ homeostasis and consequently Golgi glycosylation, TMEM165 is sensitive to high manganese exposure. Members of the UPF0016 family contain two particularly highly conserved consensus motifs E-φ-G-D-[KR]-[TS] predicted to be involved in the ion transport function of UPF0016 members. We investigate the contribution of these two specific motifs in the function of TMEM165 in Golgi glycosylation and in its Mn2+ sensitivity. Our results show the crucial importance of these two conserved motifs and underline the contribution of some specific amino acids in both Golgi glycosylation and Mn2+ sensitivity.


Asunto(s)
Antiportadores/fisiología , Proteínas de Transporte de Catión/fisiología , Aparato de Golgi/metabolismo , Manganeso/metabolismo , Calcio/metabolismo , Trastornos Congénitos de Glicosilación/metabolismo , Glicosilación , Células HEK293 , Humanos , Transporte Iónico
12.
FASEB J ; 33(2): 2669-2679, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30307768

RESUMEN

Congenital disorders of glycosylation are severe inherited diseases in which aberrant protein glycosylation is a hallmark. Transmembrane protein 165 (TMEM165) is a novel Golgi transmembrane protein involved in type II congenital disorders of glycosylation. Although its biologic function is still a controversial issue, we have demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi Mn2+ homeostasis defect. The goal of this study was to delineate the cellular pathway by which extracellular Mn2+ rescues N-glycosylation in TMEM165 knockout (KO) cells. We first demonstrated that after extracellular exposure, Mn2+ uptake by HEK293 cells at the plasma membrane did not rely on endocytosis but was likely done by plasma membrane transporters. Second, we showed that the secretory pathway Ca2+-ATPase 1, also known to mediate the influx of cytosolic Mn2+ into the lumen of the Golgi apparatus, is not crucial for the Mn2+-induced rescue glycosylation of lysosomal-associated membrane protein 2 (LAMP2). In contrast, our results demonstrate the involvement of cyclopiazonic acid- and thapsigargin (Tg)-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+. Interestingly, overexpression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2b isoform in TMEM165 KO cells partially rescues the observed LAMP2 glycosylation defect. Overall, this study indicates that the rescue of Golgi N-glycosylation defects in TMEM165 KO cells by extracellular Mn2+ involves the activity of Tg and cyclopiazonic acid-sensitive pumps, probably the SERCA pumps.-Houdou, M., Lebredonchel, E., Garat, A., Duvet, S., Legrand, D., Decool, V., Klein, A., Ouzzine, M., Gasnier, B., Potelle, S., Foulquier, F. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Manganeso/farmacología , Proteínas de la Membrana/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología , Antiportadores , Transporte Biológico , Calcio/metabolismo , Proteínas de Transporte de Catión , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Glicosilación , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Homeostasis , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
13.
Breast Cancer Res Treat ; 171(3): 581-591, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29971627

RESUMEN

PURPOSE: Cancer cells often elicit a higher glycolytic rate than normal cells, supporting the development of glycolysis inhibitors as therapeutic agents. 2-Deoxyglucose (2-DG) is used in this context due to its ability to compete with glucose. However, many studies do not take into account that 2-DG inhibits not only glycolysis but also N-glycosylation. Since there are limited publications on 2-DG mechanism of action in breast cancer, we studied its effects in breast cancer cell lines to determine the part played by glycolysis inhibition and N-linked glycosylation interference. METHODS AND RESULTS: 2-Deoxyglucose behaved as an anticancer agent with a similar efficiency on cell number decrease between the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 breast cancer cells. It also interfered with the N-linked glycosylation process in both cell lines as illustrated by the migration profile of the lysosomal-associated membrane protein 2 and calumenin. These results are reinforced by the appearance of an abnormal Man7GlcNAc2 structure both on lipid-linked oligosaccharides and N-linked glycoproteins of 2-DG incubated MDA-MB-231 cells. Besides, 2-DG-induced a transient endoplasmic reticulum stress that was more sustained in MDA-MB-231 cells. Both changes were abrogated by mannose. 2-DG, even in the presence of mannose, decreased glycolysis in both cell lines. Mannose partially reversed the effects of 2-DG on cell numbers with N-linked glycosylation interference accounting for 37 and 47% of 2-DG anti-cancerous effects in MDA-MB-231 and MCF-7 cells, respectively. CONCLUSION: N-linked glycosylation interference and glycolysis disruption both contribute to the anticancer properties of 2-DG in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacos , Glicosilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Glucosa/metabolismo , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/química , Humanos , Células MCF-7
14.
Biochim Biophys Acta Gen Subj ; 1862(3): 394-402, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29108953

RESUMEN

The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Aparato de Golgi/metabolismo , Manganeso/metabolismo , Mananos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Canales de Calcio/química , Canales de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Secuencia Conservada , Glicosilación , Transporte Iónico , Chaperonas Moleculares/metabolismo , Monosacáridos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biochem J ; 474(9): 1481-1493, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28270545

RESUMEN

TMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn2+ supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn2+ concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G, recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether, the present study identified the Golgi protein TMEM165 as a novel Mn2+-sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn2+-induced degradation of TMEM165.


Asunto(s)
Aparato de Golgi/efectos de los fármacos , Lisosomas/efectos de los fármacos , Manganeso/farmacología , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Antiportadores , Western Blotting , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Proteínas de Transporte de Catión , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Glutamatos/genética , Glutamatos/metabolismo , Glicosilación/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Microscopía Confocal , Mutación , Proteolisis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA