Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 34(3): e2958, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425036

RESUMEN

The boreal forest is one of the world's largest terrestrial biome and plays crucial roles in global biogeochemical cycles, such as carbon (C) sequestration in vegetation and soil. However, the impacts of decades of N deposition on N-limited ecosystems, like the eastern Canadian boreal forest, remain unclear. For 13 years, N deposition was simulated by periodically adding ammonium nitrate on soils of two boreal coniferous forests (i.e., balsam fir and black spruce) of eastern Canada, at low (LN) and high (HN) rates, corresponding to 3 and 10 times the ambient N deposition, respectively. We show that more than a decade of N addition had no strong effects on mineral soil C, N, P, and cation concentrations and on foliar total Ca, K, Mg, and Mn concentrations. In organic soil, C stock was not affected by N addition while N stock increased, and exchangeable Ca2+ and Mg2+ decreased at the balsam fir site under HN treatment. At both sites, LN treatment had nearly no impact on foliage and soil chemistry but foliar N and N:P significantly increased under HN treatment, potentially leading to foliar nutrient imbalance. Overall, our work indicates that, in the eastern Canadian boreal forest, soil and foliar nutrient concentrations and stocks are resilient to increasing N deposition potentially because, in the context of N limitation, extra N would be rapidly immobilized by soil micro-organisms and vegetation. These findings could improve modeling future boreal forest soil C stocks and biomass growth and could help in planning forest management strategies in eastern Canada.


Asunto(s)
Nitrógeno , Resiliencia Psicológica , Nitrógeno/análisis , Ecosistema , Taiga , Suelo/química , Canadá , Bosques , Carbono/análisis
2.
Sci Total Environ ; 853: 158240, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36075430

RESUMEN

The widespread increase of dissolved organic carbon (DOC) in northern hemisphere surface waters have been generally attributed to the recovery from acidic deposition and to climatic variations. The long-term responses of DOC to environmental drivers could be better predicted with a better understanding of the mechanisms taking place at the soil level given organic forest soils are the main site of DOC production in forested watersheds. Here, we assess the long-term variation (25 years) of DOC concentration in the solution leaching from the soil organic layer (DOCOL) of a temperate forest. Our results show that DOCOL increased by 32 % (p < 0.001) during the period of study while the lake outlet DOC concentration did not show any changes. Weekly and annual models based on a simple set of explicative variables including throughfall DOC, throughfall precipitation, temperature, litterfall amounts and organic layer leachate calcium concentration (CaOL, taken as a proxy for soil solution ionic strength) explain between 17 and 58 % of the variance in DOCOL depending on model structures and temporal scales. Throughfall DOC and CaOL were both positively related to DOCOL in the models describing its variations at the weekly and annual scale. Temperature was positively correlated to DOCOL, probably due to increased microbial activity, while precipitation had a negative effect on DOCOL (only at the weekly scale), most probably due to a dilution effect. Contrary to our expectations, annual litterfall inputs had no impacts on annual DOCOL variations. Overall, the results shows that DOCOL control is a complex process implicating a set of environmental factors that are acting in different ways while no single variable alone can explain a large part of the variation in both, weekly or annual DOCOL variations.


Asunto(s)
Materia Orgánica Disuelta , Suelo , Suelo/química , Carbono/química , Calcio , Bosques
3.
Sensors (Basel) ; 22(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35890836

RESUMEN

Historical temperature records reveal that the boreal forest has been subjected to a significant lengthening of the thermal growing season since the middle of the last century, and climate models predict that this lengthening will continue in the future. Nevertheless, the potential phenological response of trees to changes in growing season length remains relatively undocumented, particularly for evergreen boreal tree species growing in cold environments. Here, we used the recently defined zero growth (ZG) concept to extract and characterize the metrics of seasonal radial growth dynamics for 12 balsam fir trees subjected to a 12-year soil warming experiment using high resolution radius dendrometer measurements. The ZG concept provides an accurate determination of growth seasonality (onset, cessation, duration, growth rates, and total growth) for these slow-growing trees characterized by significant shrinkage in tree diameter due to dehydration in the winter. Our analysis revealed that, on average, growth onset starts at day 152 ± 7 (±1 SE, 31 May-1 June) and ceases at day 244 ± 27 (31 August-1 September), for a growing season duration of about 3 months (93 ± 26 days) over a 12-year period. Growing season duration is mainly determined by growth cessation, while growth onset varies little between years. A large part (80%) of the total growth occurs in the first 50 days of the growing season. Given the dynamics of growth, early growth cessation (shorter growing season) results in a higher average seasonal growth rate, meaning that longer growing seasons are not necessarily associated with greater tree growth. Soil warming induces earlier growth cessation, but increases the mean tree growth rate by 18.1% and the total annual growth by 9.1%, on average, as compared to the control trees. Our results suggest that a higher soil temperature for warmed trees contributes to providing better growth conditions and higher growth rates in the early growing season, when the soil temperature is low and the soil water content is elevated because of snowmelt. Attaining a critical soil temperature earlier, coupled with lower soil water content, may have contributed to the earlier growth cessation and shorter growing season of warmed trees.


Asunto(s)
Abies , Suelo , Radio (Anatomía)/química , Estaciones del Año , Temperatura , Árboles , Agua/análisis
4.
Sci Rep ; 12(1): 7220, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508611

RESUMEN

Climate change affects timings, frequency, and intensity of frost events in northern ecosystems. However, our understanding of the impacts that frost will have on growth and survival of plants is still limited. When projecting the occurrence of frost, the internal variability and the different underlying physical formulations are two major sources of uncertainty of climate models. We use 50 climate simulations produced by a single-initial large climate ensemble and five climate simulations produced by different pairs of global and regional climate models based on the concentration pathway (RCP 8.5) over a latitudinal transect covering the temperate and boreal ecosystems of western Quebec, Canada, during 1955-2099 to provide a first-order estimate of the relative importance of these two sources of uncertainty on the occurrence of frost, i.e. when air temperature is < 0 °C, and their potential damage to trees. The variation in the date of the last spring frost was larger by 21 days (from 46 to 25 days) for the 50 climate simulations compared to the 5 different pairs of climate models. When considering these two sources of uncertainty in an eco-physiological model simulating the timings of budbreak for trees of northern environment, results show that 20% of climate simulations expect that trees will be exposed to frost even in 2090. Thus, frost damage to trees remains likely under global warming.


Asunto(s)
Cambio Climático , Árboles , Ecosistema , Quebec , Estaciones del Año , Árboles/fisiología
5.
Ecol Evol ; 12(3): e8656, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342593

RESUMEN

Increasing air temperatures and changing precipitation patterns due to climate change can affect tree growth in boreal forests. Periodic insect outbreaks affect the growth trajectory of trees, making it difficult to quantify the climate signal in growth dynamics at scales longer than a year. We studied climate-driven growth trends and the influence of spruce budworm (Choristoneura fumiferana Clem.) outbreaks on these trends by analyzing the basal area increment (BAI) of 2058 trees of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, Thuja occidentalis L., Populus tremuloides Michx., and Betula papyrifera Marsh, which co-occurs in the boreal mixedwood forests of western Quebec. We used a generalized additive mixed model (GAMM) to analyze species-specific trends in BAI dynamics from 1967 to 1991. The model relied on tree size, cambial age, degree of spruce budworm defoliation, and seasonal climatic variables. Overall, we observed a decreasing growth rate of the spruce budworm host species, A. balsamea and P. glauca between 1967 and 1991, and an increasing growth rate for the non-host, P. tremuloides, B. papyrifera, and T. occidentalis. Our results suggest that insect outbreaks may offset growth increases resulting from a warmer climate. The observation warrants the inclusion of the spruce budworm defoliation into models predicting future forest productivity.

6.
PLoS Pathog ; 17(3): e1009375, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690714

RESUMEN

Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.


Asunto(s)
Fibrosis Quística/complicaciones , Neumonía/microbiología , Pseudomonas aeruginosa/patogenicidad , Sistema Respiratorio/parasitología , Animales , Proteínas Bacterianas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Ratones , Neumonía/complicaciones , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistema Respiratorio/metabolismo , Transactivadores/genética
7.
Environ Res Lett ; 16(10): 1-13, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35874907

RESUMEN

Surface water browning, the result of increasing concentrations of dissolved organic matter (DOM), has been widespread in northern ecosystems in recent decades. Here, we assess a database of 426 undisturbed headwater lakes and streams in Europe and North America for evidence of trends in DOM between 1990 and 2016. We describe contrasting changes in DOM trends in Europe (decelerating) and North America (accelerating), which are consistent with organic matter solubility responses to declines in sulfate deposition. While earlier trends (1990-2004) were almost entirely related to changes in atmospheric chemistry, climatic and chemical drivers were equally important in explaining recent DOM trends (2002-2016). We estimate that riverine DOM export from northern ecosystems increased by 27% during the study period. Increased summer precipitation strengthened upward dissolved organic carbon trends while warming apparently damped browning. Our results suggest strong but changing influences of air quality and climate on the terrestrial carbon cycle, and on the magnitude of carbon export from land to water.

8.
Sci Total Environ ; 758: 143639, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248783

RESUMEN

Reduction in SO42- and NO3- atmospheric deposition in the past decades has improved surface water quality in several catchments but recent studies suggest an increasing influence of climate and dissolved organic carbon (DOC). Here, we report on long-term trends in climate variables, strong acid anions and base cations concentrations in precipitation and at the lake outlet (stream) of a boreal catchment in Québec, Canada, and assess the combined effects of these trends on stream chemistry. Annual SO42- and NO3- depositions respectively decreased by ~85% (from 23 to ~3 kg ha-1) and ~70% (from 18 to ~5 kg ha-1 yr-1) from 1981 to 2016. As a response, stream SO42- and Ca2+ concentrations decreased by 50% (from 3.9 to 1.9 mg L-1) and ~35% (from 2.4 to 1.5 mg L-1), respectively. Stream NO3- concentration decreased by ~89% (from 0.6 to 0.07 mg L-1) mainly due to the decline in NO3- deposition and possibly to increased vegetation N uptake. Unexpectedly, stream alkalinity decreased, likely due to the decline in Ca2+ concentration and to an increase in DOC concentration. Variations in stream pH and Na+ concentrations were best explained by climatic changes than by changes in acid deposition, likely reflecting the effect of climate change on chemical weathering in the region. In addition, the average daily temperature between May and September had a strong influence on stream Ca2+ concentration in the last two decades (negative relationship), suggesting an increasing vegetation nutrient uptake caused by improved growth conditions. Overall, decreased acidic deposition resulted in a general recovery of surface water although the parallel increase in DOC concentration prevented from an increase in water alkalinity. Our data also indicate an increasing influence of climate on water chemistry at the study site, probably mediated by increasing weathering rate and vegetation nutrient uptake.

9.
mBio ; 11(5)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082253

RESUMEN

Mycobacterium kansasii is an environmental nontuberculous mycobacterium that causes opportunistic tuberculosis-like disease. It is one of the most closely related species to the Mycobacterium tuberculosis complex. Using M. kansasii as a proxy for the M. kansasii-M. tuberculosis common ancestor, we asked whether introducing the M. tuberculosis-specific gene pair Rv3377c-Rv3378c into M. kansasii affects the course of experimental infection. Expression of these genes resulted in the production of an adenosine-linked lipid species, known as 1-tuberculosinyladenosine (1-TbAd), but did not alter growth in vitro under standard conditions. Production of 1-TbAd enhanced growth of M. kansasii under acidic conditions through a bacterial cell-intrinsic mechanism independent of controlling pH in the bulk extracellular and intracellular spaces. Production of 1-TbAd led to greater burden of M. kansasii in the lungs of C57BL/6 mice during the first 24 h after infection, and ex vivo infections of alveolar macrophages recapitulated this phenotype within the same time frame. However, in long-term infections, production of 1-TbAd resulted in impaired bacterial survival in both C57BL/6 mice and Ccr2-/- mice. We have demonstrated that M. kansasii is a valid surrogate of M. tuberculosis to study virulence factors acquired by the latter organism, yet shown the challenge inherent to studying the complex evolution of mycobacterial pathogenicity with isolated gene complementation.IMPORTANCE This work sheds light on the role of the lipid 1-tuberculosinyladenosine in the evolution of an environmental ancestor to M. tuberculosis On a larger scale, it reinforces the importance of horizontal gene transfer in bacterial evolution and examines novel models and methods to provide a better understanding of the subtle effects of individual M. tuberculosis-specific virulence factors in infection settings that are relevant to the pathogen.


Asunto(s)
Lípidos/biosíntesis , Mycobacterium kansasii/genética , Mycobacterium tuberculosis/genética , Animales , Medios de Cultivo/química , Evolución Molecular , Femenino , Concentración de Iones de Hidrógeno , Pulmón/microbiología , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mycobacterium kansasii/fisiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología
10.
Sci Total Environ ; 747: 141539, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795809

RESUMEN

In the last decades, a worldwide increase in dissolved organic carbon (DOC) concentrations has been observed in temperate and boreal lakes. This phenomenon has several detrimental effects on the aquatic life and affect local C geochemical cycles. In this study, we measured DOC concentration in the water column of 36 lakes located in eastern Canada over a period of 35 years (1983-2017) and assessed the influence of climatic, hydrologic and morphometric variables on both DOC concentrations and on the rate of DOC changes (∆DOC). Our data show that morphometric and hydrologic variables have a stronger direct influence on lake water DOC concentrations than vegetation and climatic variables. DOC concentration strongly increased with the drainage ratio and the surface covered by organic deposits, which together explained 59% of the variance. As expected, we observed a significant increase in lake water DOC concentration in 72% of the surveyed lakes, which averaged 20% over the study period. Meanwhile, lake water SO42- concentration decreased by 60%. ∆DOC was poorly influenced by the rate of changes in lake water SO42- as well as by the rate of changes in mean annual air temperature and precipitation. ∆DOC was more related to the vegetation type and the morphometry of the catchment: a model including the percentage of conifers, terrestrial catchment area and ∆Cl yielded a variance explanation of 39%. This shows that the rate of increase was primarily driven by morphometric variables which did not change over the study period.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Canadá , Carbono/análisis , Bosques , Contaminantes Químicos del Agua/análisis
11.
PLoS One ; 14(12): e0226909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31877170

RESUMEN

The forest floor of boreal forest stores large amounts of organic C that may react to a warming climate and increased N deposition. It is therefore crucial to assess the impact of these factors on the temperature sensitivity of this C pool to help predict future soil CO2 emissions from boreal forest soils to the atmosphere. In this study, soil warming (+2-4°C) and canopy N addition (CNA; +0.30-0.35 kg·N·ha-1·yr-1) were replicated along a topographic gradient (upper, back and lower slope) in a boreal forest in Quebec, Canada. After nine years of treatment, the forest floor was collected in each plot, and its organic C composition was characterized through solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Forest floor samples were incubated at four temperatures (16, 24, 32 and 40°C) and respiration rates (RR) measured to assess the temperature sensitivity of forest floor RR (Q10 = e10k) and basal RR (B). Both soil warming and CNA had no significant effect on forest floor chemistry (e.g., C, N, Ca and Mg content, amount of soil organic matter, pH, chemical functional groups). The NMR analyses did not show evidence of significant changes in the forest floor organic C quality. Nonetheless, a significant effect of soil warming on both the Q10 of RR and B was observed. On average, B was 72% lower and Q10 45% higher in the warmed, versus the control plots. This result implies that forest floor respiration will more strongly react to changes in soil temperature in a future warmer climate. CNA had no significant effect on the measured soil and respiration parameters, and no interaction effects with warming. In contrast, slope position had a significant effect on forest floor organic C quality. Upper slope plots had higher soil alkyl C:O-alkyl C ratios and lower B values than those in the lower slope, across all different treatments. This result likely resulted from a relative decrease in the labile C fraction in the upper slope, characterized by lower moisture levels. Our results point towards higher temperature sensitivity of RR under warmer conditions, accompanied by an overall down-regulation of RR at low temperatures (lower B). Since soil C quantity and quality were unaffected by the nine years of warming, the observed patterns could result from microbial adaptations to warming.


Asunto(s)
Ciclo del Carbono , Bosques , Calentamiento Global , Nitrógeno/análisis , Suelo/química , Dióxido de Carbono/análisis , Calor , Quebec , Microbiología del Suelo , Temperatura
12.
Sci Rep ; 9(1): 6832, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048703

RESUMEN

Tree rings are thought to be a powerful tool to reconstruct historical growth changes and have been widely used to assess tree responses to global warming. Demographic inferences suggest, however, that typical sampling procedures induce spurious trends in growth reconstructions. Here we use the world's largest single tree-ring dataset (283,536 trees from 136,621 sites) from Quebec, Canada, to assess to what extent growth reconstructions based on these - and thus any similar - data might be affected by this problem. Indeed, straightforward growth rate reconstructions based on these data suggest a six-fold increase in radial growth of black spruce (Picea mariana) from ~0.5 mm yr-1 in 1800 to ~2.5 mm yr-1 in 1990. While the strong correlation (R2 = 0.98) between this increase and that of atmospheric CO2 could suggest a causal relationship, we here unambiguously demonstrate that this growth trend is an artefact of sampling biases caused by the absence of old, fast-growing trees (cf. "slow-grower survivorship bias") and of young, slow-growing trees (cf. "big-tree selection bias") in the dataset. At the moment, we cannot envision how to remedy the issue of incomplete representation of cohorts in existing large-scale tree-ring datasets. Thus, innovation will be needed before such datasets can be used for growth rate reconstructions.


Asunto(s)
Artefactos , Bosques , Picea/crecimiento & desarrollo , Canadá , Dióxido de Carbono , Quebec
13.
PLoS One ; 14(4): e0215511, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31022212

RESUMEN

The production of maple syrup is an important cultural and economic activity directly related to the climate of northeastern North America. As a result, there are signs that climate change could have negative impacts on maple syrup production in the next decades, particularly for regions located at the southern margins of the sugar maple (Acer saccharum Marsh.) range. The purpose of this survey study is to present the beliefs and opinions of maple syrup producers of Canada (N = 241) and the U.S. (N = 113) on climate change in general, its impacts on sugar maple health and maple syrup production, and potential adaptation measures. Using conditional inference classification trees, we examined how the socio-economic profile of respondents and the geographic location and size of respondents' sugar bushes shaped the responses of survey participants. While a majority (75%) of respondents are confident that the average temperature on Earth is increasing, less than half (46%) believe that climate change will have negative impacts on maple syrup yield in the next 30 years. Political view was a significant predictor of these results, with respondents at the right right and center-right of the political spectrum being less likely to believe in climate change and less likely to anticipate negative effects of climate change on maple syrup production. In addition, 77% of the participants indicated an interest in adopting adaptation strategies if those could increase maple syrup production. This interest was greater for respondents using vacuum tubing for sap collection than other collection methods. However, for many respondents (particularly in Canada), lack of information was identified as a constraint limiting adaptation to climate change.


Asunto(s)
Acer/fisiología , Actitud , Agricultores/psicología , Exudados de Plantas/química , Aclimatación , Adulto , Canadá , Cambio Climático , Producción de Cultivos/estadística & datos numéricos , Cultura , Agricultores/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Exudados de Plantas/análisis , Azúcares/análisis , Encuestas y Cuestionarios/estadística & datos numéricos , Gusto , Estados Unidos
14.
Nat Commun ; 9(1): 3213, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097584

RESUMEN

Predicted increases in temperature and aridity across the boreal forest region have the potential to alter timber supply and carbon sequestration. Given the widely-observed variation in species sensitivity to climate, there is an urgent need to develop species-specific predictive models that can account for local conditions. Here, we matched the growth of 270,000 trees across a 761,100 km2 region with detailed site-level data to quantify the growth responses of the seven most common boreal tree species in Eastern Canada to changes in climate. Accounting for spatially-explicit species-specific responses, we find that while 2 °C of warming may increase overall forest productivity by 13 ± 3% (mean ± SE) in the absence of disturbance, additional warming could reverse this trend and lead to substantial declines exacerbated by reductions in water availability. Our results confirm the transitory nature of warming-induced growth benefits in the boreal forest and highlight the vulnerability of the ecosystem to excess warming and drying.


Asunto(s)
Cambio Climático , Árboles/crecimiento & desarrollo , Modelos Biológicos , Quebec , Especificidad de la Especie , Temperatura , Agua
15.
PLoS One ; 13(6): e0197689, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29897977

RESUMEN

Assessing the perception of key stakeholders within the forest sector is critical to evaluating their readiness to engage in adapting to climate change. Here, we report the results of the most comprehensive survey carried out in the Canadian forestry sector to date regarding perceptions of climate change. A total of 1158 individuals, representing a wide range of stakeholders across the five most important forestry provinces in Canada, were asked about climate change, its impact on forest ecosystems, and the suitability of current forest management for addressing future impacts. Overall, we found that respondents were more concerned about climate change than the general population. More than 90% of respondents agreed with the anthropogenic origins of climate change, and > 50% considered it a direct threat to their welfare. Political view was the main driver of general beliefs about the causes of climate change and its future consequences, while the province of origin proved to be the best predictor of perceived current impacts on forest ecosystems and its associated risks; and type of stakeholder was the main driver of perceived need for adaptation. Industrial stakeholders were the most skeptical about the anthropogenic cause(s) of climate change (18% disagreed with this statement, compared to an average of 8% in the other stakeholders), its impacts on forest ecosystems (28% for industry vs. 10% for other respondents), and the need for new management practices (18% vs. 7%). Although the degree of awareness and the willingness to implement adaptive practices were high even for the most skeptical groups, our study identified priority sectors or areas for action when designing awareness campaigns. We suggest that the design of a strategic framework for implementing climate adaptation within the Canadian forest sector should focus on the relationship between climate change and changes in disturbance regimes, and above all on the economic consequences of these changes, but it should also take into account the positions shown by each of the actors in each province.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Ecosistema , Bosques , Agricultura Forestal , Humanos , Percepción , Encuestas y Cuestionarios
16.
Sci Total Environ ; 630: 203-210, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29477819

RESUMEN

A study was undertaken to test the effects of molybdenum (Mo) and phosphorus (P) amendments on biological nitrogen (N) fixation (BNF) by boreal forest moss-associated cyanobacteria. Feather moss (Pleurozium schreberi) samples were collected on five sites, on two dates and at different roadside distances (0-100m) corresponding to an assumed gradient of reactive N deposition. Potential BNF of Mo and P amended moss samples was measured using the acetylene reduction assay. Total N, P and heavy metal concentrations of mosses collected at 0 and 100m from roadsides were also measured. Likewise, the needles from Norway spruce trees (Picea abies) at different roadside distances were collected in late summer and analyzed for total N, P and heavy metals. There was a significant increase in BNF with roadside distance on 7-of-10 individual Site×Date combinations. We found no clear evidence of an N gradient across roadside distances. Elemental analyses of feather moss and Norway spruce needle tissues suggested decreasing deposition of heavy metals (Mo-Co-Cr-Ni-V-Pb-Ag-Cu) as well as P with increasing distance from the roadside. The effects of Mo and P amendments on BNF were infrequent and inconsistent across roadside distances and across sites. One particular site, however, displayed greater concentrations of heavy metals near the roadside, as well as a steeper P fertility gradient with roadside distance, than the other sites. Here, BNF increased with roadside distance only when moss samples were amended with P. Also at this site, BNF across all roadside distances was higher when mosses were amended with both Mo and P, suggesting a co-limitation of these two nutrients in controlling BNF. In summary, our study showed a potential for car emissions to increase heavy metals and P along roadsides and underscored the putative roles of these anthropogenic pollutants on BNF in northern latitudes.


Asunto(s)
Bryopsida/fisiología , Monitoreo del Ambiente , Metales Pesados/análisis , Fijación del Nitrógeno/efectos de los fármacos , Fósforo/análisis , Briófitas , Bryopsida/efectos de los fármacos , Metales Pesados/toxicidad , Nitrógeno/análisis , Noruega , Fósforo/toxicidad , Taiga
17.
Glob Chang Biol ; 24(6): 2339-2351, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29460369

RESUMEN

Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.


Asunto(s)
Cambio Climático , Sequías , Bosques , Monitoreo del Ambiente , América del Norte , Estaciones del Año , Suelo , Temperatura , Árboles/crecimiento & desarrollo , Agua
18.
PLoS One ; 12(12): e0189444, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281697

RESUMEN

Increasing access to extensively replicated and broadly distributed tree-ring collections has led to a greater use of these large data sets to investigate climate forcing on tree growth. However, the number of chronologies added to large accessible databases is declining and few are updated, while chronologies are often sparsely distributed and are more representative of marginal growing environments. On the other hand, National Forest Inventories (NFI), although poorly replicated at the plot level as compared to classic dendrochronological sampling, contain a large amount of tree-ring data with high spatial density designed to be spatially representative of the forest cover. We propose an a posteriori approach to validating tree-ring measurements and dating, selecting individual tree-ring width time series, and building average chronologies at various spatial scales based on an extensive collection of ring width measurements of nearly 94,000 black spruce trees distributed over a wide area and collected as part of the NFI in the province of Quebec, Canada. Our results show that reliable signals may be derived at various spatial scales (from 37 to 583,000 km2) from NFI increment core samples. Signals from independently built chronologies are spatially coherent with each other and well-correlated with independent reference chronologies built at the stand level. We thus conclude that tree-ring data from NFIs provide an extraordinary opportunity to strengthen the spatial and temporal coverage of tree-ring data and to improve coordination with other contemporary measurements of forest growth to provide a better understanding of tree growth-climate relationships over broad spatial scales.


Asunto(s)
Clima , Bosques , Árboles , Ecosistema , Quebec
19.
J Mol Med (Berl) ; 95(10): 1053-1064, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28695226

RESUMEN

Cystic fibrosis is the most common genetic disease, in which symptoms may be alleviated but not fully eliminated. Ceramides have long been implicated in the inflammatory etiology of cystic fibrosis, with contradicting reports with regards to their role. Recently, significant biological and biophysical differences have been observed between long- and very long-chain ceramides. This work reveals that long-chain ceramides are upregulated whereas very long-chain ceramides are downregulated in cell lines, mouse animal model, and patients with cystic fibrosis, compared with their controls. Treatment with fenretinide decreases the levels of long-chain ceramides and increases the levels of very long-chain ceramides. Our results show that restoration of cystic fibrosis conductance regulator (CFTR) expression is associated with normalization of aberrant levels of specific ceramides. This demonstrates for the first time a correlation between CFTR protein expression and regulation of specific ceramide levels. Furthermore, using cystic fibrosis lung epithelial cell lines, we demonstrate that this effect can be attributed to the transcriptional downregulation of ceramide synthase 5 (Cers5) enzyme. We also discovered a partial synergism between fenretinide and zinc (Zn2+), which deficiency has been reported in patients with cystic fibrosis. Overall, in addition to having direct translational application, we believe that our findings contribute to the understanding of ceramide metabolism in cystic fibrosis, as well as other inflammatory diseases where imbalances of ceramides have also been observed. KEY MESSAGES: Long- and very long-chain ceramides (LCCs and VLCCs) are biochemically distinct. LCCs are upregulated whereas VLCCs are downregulated in cystic fibrosis. Fenretinide downregulates the levels of LCCs and upregulates the levels of VLCCs. Fenretinide changes the balance of LCCs and VLCCs by downregulating Cers5 enzyme. Fenretinide and zinc ions cooperate in the modulation of ceramide levels.


Asunto(s)
Ceramidas/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fenretinida/uso terapéutico , Esfingosina N-Aciltransferasa/metabolismo , Adolescente , Adulto , Animales , Línea Celular , Ceramidas/análisis , Ceramidas/sangre , Fibrosis Quística/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , PPAR gamma/agonistas , Esfingosina N-Aciltransferasa/antagonistas & inhibidores , Esfingosina N-Aciltransferasa/genética , Activación Transcripcional/efectos de los fármacos , Adulto Joven
20.
Nat Plants ; 2(12): 16187, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27909293

RESUMEN

Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide1. Although the impact of drought on tree growth and mortality is being increasingly documented2-4, very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.


Asunto(s)
Cambio Climático , Sequías , Taiga , Árboles/fisiología , Quebec
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...