Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Magn Reson ; 16: 62, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25158620

RESUMEN

BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies.


Asunto(s)
Insuficiencia Cardíaca/diagnóstico , Hemosiderosis/diagnóstico , Hierro/metabolismo , Imagen por Resonancia Magnética/normas , Contracción Miocárdica , Miocardio/metabolismo , Función Ventricular Izquierda , Adolescente , Adulto , Biomarcadores/metabolismo , Calibración , Niño , Europa (Continente) , Femenino , Fijadores , Formaldehído , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón , Hemosiderosis/metabolismo , Hemosiderosis/mortalidad , Hemosiderosis/patología , Hemosiderosis/fisiopatología , Hemosiderosis/cirugía , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Miocardio/patología , Valor Predictivo de las Pruebas , Pronóstico , Espectrofotometría Atómica , Tailandia , Factores de Tiempo , Fijación del Tejido/métodos , Adulto Joven
2.
Magn Reson Med ; 71(5): 1896-905, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23813415

RESUMEN

PURPOSE: The process of invasion and metastasis formation of tumor cells can be studied by following the migration of labeled cells over prolonged time periods. This report investigates the applicability of iron oxide nanoparticles as a magnetic resonance imaging (MRI) contrast agent for cell labeling. METHODS: γFe2 O3 nanoparticles prepared with direct flame spray pyrolysis are biofunctionalized with poly-l-lysine (PLL). The nanoparticles within the cells were observed with transmission electron microscopy, bright-field microscopy, and magnetorelaxometry. MRI of labeled cells suspended in agarose was used to estimate the detection limit. RESULTS: PLL-coated particles are readily taken up, stored in intracellular clusters, and gradually degraded by the cells. During cell division, the nanoparticle clusters are divided and split between daughter cells. The MRI detection limit was found to be 25 cells/mm(3) for R2*, and 70 cells/mm(3) for R2. The iron specificity, however, was higher for R2 images. Due to the degradation of intracellular γFe2 O3 to paramagnetic iron ions within 13 days, the R1, R2, and R2* contrast gradually decreased over this time period to approximately 50% of its initial value. CONCLUSIONS: These results suggest that PLL-coated γFe2 O3 nanoparticles can be used as an MRI contrast agent for long-term studies of cell migration. Magn Reson Med 71:1896-1905, 2014. © 2013 Wiley Periodicals, Inc.


Asunto(s)
Rastreo Celular/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Neoplasias Experimentales/patología , Animales , Línea Celular Tumoral , Medios de Contraste/química , Humanos , Nanopartículas de Magnetita/ultraestructura , Invasividad Neoplásica , Tamaño de la Partícula , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...