Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37577527

RESUMEN

Amyloid ß (Aß) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aß42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aß42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We show that human Aß42 peptides, but neither murine Aß42 nor human Aß17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75 and pan-cadherin. Moreover, Aß42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aß42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aß toxicity in the context of γ-secretase-dependent homeostatic signaling.

2.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105735

RESUMEN

Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Presenilinas/metabolismo , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA