Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 164(3)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36631165

RESUMEN

High prevalence of obesity is attributable in part to consumption of highly palatable, fat-rich foods. However, the mechanism controlling dietary fat intake is largely unknown. In this study we investigated the role of brain-derived neurotrophic factor (BDNF) in the control of dietary fat intake in a mouse model that mimics the common human Val-to-Met (Val66Met) polymorphism that impairs BDNF release via the regulated secretory pathway. BdnfMet/Met mice gained weight much faster than wild-type (WT) mice and developed severe obesity due to marked hyperphagia when they were fed HFD. Hyperphagia in these mice worsened when the fat content in their diet was increased. Conversely, mice lacking leptin exhibited similar hyperphagia on chow and HFD. When 2 diets were provided simultaneously, WT and BdnfMet/Met mice showed a comparable preference for the more palatable diet rich in either fat or sucrose, indicating that increased hyperphagia on fat-rich diets in BdnfMet/Met mice is not due to enhanced hedonic drive. In support of this interpretation, WT and BdnfMet/Met mice increased calorie intake to a similar extent during the first day after chow was switched to HFD; however, WT mice decreased HFD intake faster than BdnfMet/Met mice in subsequent days. Furthermore, we found that refeeding after fasting or nocturnal feeding with HFD activated TrkB more strongly than with chow in the hypothalamus of WT mice, whereas TrkB activation under these 2 conditions was greatly attenuated in BdnfMet/Met mice. These results indicate that satiety factors generated during HFD feeding induce BDNF release to suppress excess dietary fat intake.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Hiperfagia , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dieta , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Hiperfagia/genética , Obesidad/genética
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468645

RESUMEN

Mutations in the TrkB neurotrophin receptor lead to profound obesity in humans, and expression of TrkB in the dorsomedial hypothalamus (DMH) is critical for maintaining energy homeostasis. However, the functional implications of TrkB-fexpressing neurons in the DMH (DMHTrkB) on energy expenditure are unclear. Additionally, the neurocircuitry underlying the effect of DMHTrkB neurons on energy homeostasis has not been explored. In this study, we show that activation of DMHTrkB neurons leads to a robust increase in adaptive thermogenesis and energy expenditure without altering heart rate or blood pressure, while silencing DMHTrkB neurons impairs thermogenesis. Furthermore, we reveal neuroanatomically and functionally distinct populations of DMHTrkB neurons that regulate food intake or thermogenesis. Activation of DMHTrkB neurons projecting to the raphe pallidus (RPa) stimulates thermogenesis and increased energy expenditure, whereas DMHTrkB neurons that send collaterals to the paraventricular hypothalamus (PVH) and preoptic area (POA) inhibit feeding. Together, our findings provide evidence that DMHTrkB neuronal activity plays an important role in regulating energy expenditure and delineate distinct neurocircuits that underly the separate effects of DMHTrkB neuronal activity on food intake and thermogenesis.


Asunto(s)
Regulación del Apetito/genética , Metabolismo Energético/genética , Glicoproteínas de Membrana/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Área Preóptica/metabolismo , Proteínas Tirosina Quinasas/genética , Termogénesis/genética , Animales , Ingestión de Alimentos/genética , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Núcleo Pálido del Rafe/citología , Núcleo Pálido del Rafe/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Área Preóptica/citología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Proteína Fluorescente Roja
3.
Cell Metab ; 29(4): 917-931.e4, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30661931

RESUMEN

Anxiety disorders are associated with body weight changes in humans. However, the mechanisms underlying anxiety-induced weight changes remain poorly understood. Using Emx1Cre/+ mice, we deleted the gene for brain-derived neurotrophic factor (BDNF) in the cortex, hippocampus, and some amygdalar subregions. The resulting mutant mice displayed impaired GABAergic transmission and elevated anxiety. They were leaner when fed either a chow diet or a high-fat diet, owing to higher sympathetic activity, basal metabolic rate, brown adipocyte thermogenesis, and beige adipocyte formation, compared to control mice. BDNF re-expression in the amygdala rescued the anxiety and metabolic phenotypes in mutant mice. Conversely, anxiety induced by amygdala-specific Bdnf deletion or administration of an inverse GABAA receptor agonist increased energy expenditure. These results reveal that increased activities in anxiogenic circuits can reduce body weight by promoting adaptive thermogenesis and basal metabolism via the sympathetic nervous system and suggest that amygdalar GABAergic neurons are a link between anxiety and metabolic dysfunction.


Asunto(s)
Ansiolíticos/farmacología , Bromazepam/farmacología , Carbolinas/farmacología , Metabolismo Energético/efectos de los fármacos , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Ansiolíticos/administración & dosificación , Peso Corporal/efectos de los fármacos , Bromazepam/administración & dosificación , Carbolinas/administración & dosificación , Dieta , Ratones , Ratones Endogámicos , Obesidad/inducido químicamente , Obesidad/metabolismo
4.
Dev Cell ; 39(3): 329-345, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27825441

RESUMEN

Insulin secretion by pancreatic islet ß cells is critical for glucose homeostasis, and a blunted ß cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet ß cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate ß cell dysfunction.


Asunto(s)
Glucosa/farmacología , Insulina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , Actinas/metabolismo , Animales , Endocitosis/efectos de los fármacos , Exocitosis/efectos de los fármacos , Eliminación de Gen , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis/efectos de los fármacos , Humanos , Secreción de Insulina , Integrasas/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Especificidad de Órganos/efectos de los fármacos , Páncreas/irrigación sanguínea , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Fosforilación/efectos de los fármacos , Receptor trkA/metabolismo
5.
Dev Cell ; 30(4): 361-2, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25158849

RESUMEN

Biological tubes serve as the body's plumbing system, transporting fluids and gases throughout secretory, circulatory, and respiratory organs. In this issue of Developmental Cell, Nedvetsky et al. (2014) find that vasoactive intestinal peptide (VIP), secreted by parasympathetic nerves, is a surprising player in directing epithelial tubulogenesis in salivary glands.


Asunto(s)
Ganglios Parasimpáticos/metabolismo , Organogénesis , Conductos Salivales/embriología , Péptido Intestinal Vasoactivo/metabolismo , Animales
6.
Cell Rep ; 4(2): 287-301, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23850289

RESUMEN

Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion, and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of ß-adrenergic signaling. Conversely, the administration of a ß-adrenergic agonist restored islet morphology and glucose tolerance in deinnervated animals. Furthermore, in neuron-islet cocultures, sympathetic neurons promoted islet cell migration in a ß-adrenergic-dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders.


Asunto(s)
Islotes Pancreáticos/citología , Islotes Pancreáticos/inervación , Neuronas/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Femenino , Glucosa/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Norepinefrina/metabolismo , Embarazo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Sistema Nervioso Simpático/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...