Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37937078

RESUMEN

Introduction: Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, cytopenias, and dysplasia. The gene encoding ten-eleven translocation 2 (tet2), a dioxygenase enzyme that catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, is a recurrently mutated tumor suppressor gene in MDS and other myeloid malignancies. Previously, we reported a stable zebrafish line with a loss-of-function mutation in the tet2 gene. The tet2m/m-mutant zebrafish developed a pre-MDS state with kidney marrow dysplasia, but normal circulating blood counts by 11 months of age and accompanying anemia, signifying the onset of MDS, by 24 months of age. Methods: In the current study, we collected progenitor cells from the kidney marrows of the adult tet2m/m and tet2wt/wt fish at 4 and 15 months of age and conducted enhanced reduced representation of bisulfite sequencing (ERRBS) and bulk RNA-seq to measure changes in DNA methylation and gene expression of hematopoietic stem and progenitor cells (HSPCs). Results and discussion: A global increase in DNA methylation of gene promoter regions and CpG islands was observed in tet2m/m HSPCs at 4 months of age when compared with the wild type. Furthermore, hypermethylated genes were significantly enriched for targets of SUZ12 and the metal-response-element-binding transcription factor 2 (MTF2)-involved in the polycomb repressive complex 2 (PRC2). However, between 4 and 15 months of age, we observed a paradoxical global decrease in DNA methylation in tet2m/m HSPCs. Gene expression analyses identified upregulation of genes associated with mTORC1 signaling and interferon gamma and alpha responses in tet2m/m HSPCs at 4 months of age when compared with the wild type. Downregulated genes in HSPCs of tet2-mutant fish at 4 months of age were enriched for cell cycle regulation, heme metabolism, and interleukin 2 (IL2)/signal transducer and activator of transcription 5 (STAT5) signaling, possibly related to increased self-renewal and clonal advantage in HSPCs with tet2 loss of function. Finally, there was an overall inverse correlation between overall increased promoter methylation and gene expression.

3.
Nature ; 612(7939): 301-309, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450978

RESUMEN

Clonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes1-5. Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75, which are associated with reduced incidence of CHIP. We also identify novel rare variant associations with clonal haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed that CHIP is associated with solid cancers, including non-melanoma skin cancer and lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent development of myeloid but not lymphoid leukaemias. Additionally, contrary to previous findings from the initial 50,000 UKB exomes6, our results in the full sample do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of heterogeneous phenotypes with shared and unique germline genetic causes and varied clinical implications.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , Hematopoyesis Clonal/genética , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética
4.
Hepatol Commun ; 6(11): 3083-3097, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36017776

RESUMEN

Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.


Asunto(s)
Quistes , Pez Cebra , Animales , Pez Cebra/genética , Proproteína Convertasas/genética , Mutación Missense/genética , Tunicamicina , Actinas/genética , Modelos Animales de Enfermedad , Hígado/patología , Quistes/genética , Serina-Treonina Quinasas TOR/genética , Mamíferos
5.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35510953

RESUMEN

Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Tiroides , Animales , Proteínas del Citoesqueleto/genética , Humanos , Neoplasias Pulmonares/patología , Proteómica , Proteínas Proto-Oncogénicas c-ret/genética , Receptores de Factores de Crecimiento de Fibroblastos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética
6.
Sci Rep ; 12(1): 5573, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35368039

RESUMEN

It is critical to understand the molecular mechanisms governing the regulation of MITF, a lineage specific transcription factor in melanocytes and an oncogene in melanoma. We identified PPP6C, a serine/threonine phosphatase, as a key regulator of MITF in melanoma. PPP6C is the only recurrently mutated serine/threonine phosphatase across all human cancers identified in sequencing studies and the recurrent R264C mutation occurs exclusively in melanoma. Using a zebrafish developmental model system, we demonstrate that PPP6C expression disrupts melanocyte differentiation. Melanocyte disruption was rescued by engineering phosphomimetic mutations at serine residues on MITF. We developed an in vivo MITF promoter assay in zebrafish and studied the effects of PPP6C(R264C) on regulating MITF promoter activity. Expression of PPP6C(R264C) cooperated with oncogenic NRAS(Q61K) to accelerate melanoma initiation in zebrafish, consistent with a gain of function alteration. Using a human melanoma cell line, we examined the requirement for PPP6C in proliferation and MITF expression. We show that genetic inactivation of PPP6C increases MITF and target gene expression, decreases sensitivity to BRAF inhibition, and increases phosphorylated MITF in a BRAF(V600E) mutant melanoma cell line. Our data suggests that PPP6C may be a relevant drug target in melanoma and proposes a mechanism for its action.


Asunto(s)
Melanoma , Factor de Transcripción Asociado a Microftalmía , Animales , Carcinogénesis/metabolismo , Línea Celular Tumoral , Melanocitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Pez Cebra/metabolismo
7.
Ann Surg Oncol ; 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230579

RESUMEN

BACKGROUND: It is unclear if different genetic drivers in papillary thyroid cancer (PTC) confer different phenotypic tumor behavior leading to more aggressive disease. We hypothesized that RET-driven cancers are more aggressive. PATIENTS AND METHODS: We reviewed records of consecutive patients treated for newly diagnosed PTC at this single institution from 2015 to 2016. Tumor samples from these patients were genotyped to identify RET-translocated, BRAFV600E mutant, and HRAS, KRAS, and NRAS mutant tumors. Patient demographic, clinicopathologic, and outcomes data were compared to identify genotype-specific patterns of disease. RESULTS: Of the 327 patients who underwent initial surgery for PTC during the study period, 192 (58.7%) had BRAFV600E mutant tumors (BRAF), 14 (4.3%) had RET-rearranged tumors (RET), 46 (14.1%) had RAS mutant tumors (RAS), and 75 (22.9%) had BRAF, RET, and RAS wildtype tumors. RET-driven tumors were more likely to have extrathyroidal extension (50.0% versus 27.0% for BRAF and 2.2% for RAS, P < 0.001), multifocal disease (85.7% versus 60.3%, and 44.4%, respectively, P = 0.017), and distant metastases (14.3% versus 1.1%, and 0%, respectively, P = 0.019). RET and BRAF patients also had worse disease-free survival than RAS patients (Kaplan-Meier log rank, P = 0.027). CONCLUSIONS: Patients with RET-driven PTCs had higher rates of extrathyroidal extension, multifocal disease, and distant metastases than patients whose tumors had BRAFV600E or RAS mutations. Patients with RET-rearranged tumors had similar disease-free survival to patients with BRAFV600E mutant tumors. RET rearrangement may confer an aggressive phenotype in PTC.

8.
Front Cell Dev Biol ; 10: 814216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223844

RESUMEN

Perturbations to the epigenome are known drivers of tumorigenesis. In melanoma, alterations in histone methyltransferases that catalyze methylation at histone 3 lysine 9 and histone 3 lysine 27-two sites of critical post-translational modification-have been reported. To study the function of these methyltransferases in melanoma, we engineered melanocytes to express histone 3 lysine-to-methionine mutations at lysine 9 and lysine 27, which are known to inhibit the activity of histone methyltransferases, in a zebrafish melanoma model. Using this system, we found that loss of histone 3 lysine 9 methylation dramatically suppressed melanoma formation and that inhibition of histone 3 lysine 9 methyltransferases in human melanoma cells increased innate immune response signatures. In contrast, loss of histone 3 lysine 27 methylation significantly accelerated melanoma formation. We identified FOXD1 as a top target of PRC2 that is silenced in melanocytes and found that aberrant overexpression of FOXD1 accelerated melanoma onset. Collectively, these data demonstrate how histone 3 lysine-to-methionine mutations can be used to uncover critical roles for methyltransferases.

9.
Oncologist ; 26(11): e1971-e1981, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34286887

RESUMEN

BACKGROUND: Characterization of circulating tumor DNA (ctDNA) has been integrated into clinical practice. Although labs have standardized validation procedures to develop single locus tests, the efficacy of on-site plasma-based next-generation sequencing (NGS) assays still needs to be proved. MATERIALS AND METHODS: In this retrospective study, we profiled DNA from matched tissue and plasma samples from 75 patients with cancer. We applied an NGS test that detects clinically relevant alterations in 33 genes and microsatellite instability (MSI) to analyze plasma cell-free DNA (cfDNA). RESULTS: The concordance between alterations detected in both tissue and plasma samples was higher in patients with metastatic disease. The NGS test detected 77% of sequence alterations, amplifications, and fusions that were found in metastatic samples compared with 45% of those alterations found in the primary tumor samples (p = .00005). There was 87% agreement on MSI status between the NGS test and tumor tissue results. In three patients, MSI-high ctDNA correlated with response to immunotherapy. In addition, the NGS test revealed an FGFR2 amplification that was not detected in tumor tissue from a patient with metastatic gastric cancer, emphasizing the importance of profiling plasma samples in patients with advanced cancer. CONCLUSION: Our validation experience of a plasma-based NGS assay advances current knowledge about translating cfDNA testing into clinical practice and supports the application of plasma assays in the management of oncology patients with metastatic disease. With an in-house method that minimizes the need for invasive procedures, on-site cfDNA testing supplements tissue biopsy to guide precision therapy and is entitled to become a routine practice. IMPLICATIONS FOR PRACTICE: This study proposes a solution for decentralized liquid biopsy testing based on validation of a next-generation sequencing (NGS) test that detects four classes of genomic alterations in blood: sequence mutations (single nucleotide substitutions or insertions and deletions), fusions, amplifications, and microsatellite instability (MSI). Although there are reference labs that perform single-site comprehensive liquid biopsy testing, the targeted assay this study validated can be established locally in any lab with capacity to offer clinical molecular pathology assays. To the authors' knowledge, this is the first report that validates evaluating an on-site plasma-based NGS test that detects the MSI status along with common sequence alterations encountered in solid tumors.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inestabilidad de Microsatélites , Neoplasias/genética , Estudios Retrospectivos
10.
J Clin Invest ; 130(5): 2252-2269, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32202514

RESUMEN

Prenatal alcohol exposure (PAE) affects at least 10% of newborns globally and leads to the development of fetal alcohol spectrum disorders (FASDs). Despite its high incidence, there is no consensus on the implications of PAE on metabolic disease risk in adults. Here, we describe a cohort of adults with FASDs that had an increased incidence of metabolic abnormalities, including type 2 diabetes, low HDL, high triglycerides, and female-specific overweight and obesity. Using a zebrafish model for PAE, we performed population studies to elucidate the metabolic disease seen in the clinical cohort. Embryonic alcohol exposure (EAE) in male zebrafish increased the propensity for diet-induced obesity and fasting hyperglycemia in adulthood. We identified several consequences of EAE that may contribute to these phenotypes, including a reduction in adult locomotor activity, alterations in visceral adipose tissue and hepatic development, and persistent diet-responsive transcriptional changes. Taken together, our findings define metabolic vulnerabilities due to EAE and provide evidence that behavioral changes and primary organ dysfunction contribute to resultant metabolic abnormalities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trastornos del Espectro Alcohólico Fetal , Obesidad , Efectos Tardíos de la Exposición Prenatal , Adulto , Animales , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Trastornos del Espectro Alcohólico Fetal/metabolismo , Trastornos del Espectro Alcohólico Fetal/patología , Humanos , Recién Nacido , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Sistema de Registros , Pez Cebra
11.
Am J Pathol ; 190(5): 1108-1117, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142731

RESUMEN

Dermal invasion is a hallmark of malignant melanoma. Although the molecular alterations that drive the progression of primary melanoma to metastatic disease have been studied extensively, the early progression of noninvasive primary melanoma to an invasive state is poorly understood. To elucidate the mechanisms underlying the transition from radial to vertical growth, the first step in melanoma invasion, we developed a zebrafish melanoma model in which constitutive activation of ribosomal protein S6 kinase A1 drives tumor invasion. Transcriptomic analysis of ribosomal protein S6 kinase A1-activated tumors identified metabolic changes, including up-regulation of genes associated with oxidative phosphorylation. Vertical growth phase human melanoma cells show higher oxygen consumption and preferential utilization of glutamine compared to radial growth phase melanoma cells. Peroxisome proliferator activated receptor γ coactivator (PGC)-1α, has been proposed as a master regulator of tumor oxidative phosphorylation. In human primary melanoma specimens, PGC1α protein expression was found to be positively associated with increased tumor thickness and expression of the proliferative marker Ki-67 and the reactive oxygen species scavenger receptor class A member 3. PGC1α depletion modulated cellular processes associated with primary melanoma growth and invasion, including oxidative stress. These results support a role for PGC1α in mediating glutamine-driven oxidative phosphorylation to facilitate the invasive growth of primary melanoma.


Asunto(s)
Melanoma/metabolismo , Melanoma/patología , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Xenoinjertos , Humanos , Invasividad Neoplásica , Pez Cebra
12.
Nucleic Acids Res ; 48(7): e38, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32064511

RESUMEN

CRISPR/Cas9 has become a powerful tool for genome editing in zebrafish that permits the rapid generation of loss of function mutations and the knock-in of specific alleles using DNA templates and homology directed repair (HDR). We examined the efficiency of synthetic, chemically modified gRNAs and demonstrate induction of indels and large genomic deletions in combination with recombinant Cas9 protein. We developed an in vivo genetic assay to measure HDR efficiency and we utilized this assay to test the effect of altering template design on HDR. Utilizing synthetic gRNAs and linear dsDNA templates, we successfully performed knock-in of fluorophores at multiple genomic loci and demonstrate transmission through the germline at high efficiency. We demonstrate that synthetic HDR templates can be used to knock-in bacterial nitroreductase (ntr) to facilitate lineage ablation of specific cell types. Collectively, our data demonstrate the utility of combining synthetic gRNAs and dsDNA templates to perform homology directed repair and genome editing in vivo.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Reparación del ADN por Recombinación , Animales , Proteína 9 Asociada a CRISPR/genética , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/genética , Mutación INDEL , Indicadores y Reactivos , Melanocitos , Nitrorreductasas/genética , ARN/química , Moldes Genéticos , Pez Cebra/embriología , Pez Cebra/genética
13.
Nat Genet ; 51(9): 1308-1314, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406347

RESUMEN

Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options1. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families2. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Heterozygous rabl3 mutant zebrafish show increased susceptibility to cancer formation. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases3. Indeed, the truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. Our studies identify RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Carcinoma/patología , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Pancreáticas/patología , Prenilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Unión al GTP rab/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linaje , Proteínas Proto-Oncogénicas p21(ras)/genética , Homología de Secuencia , Pez Cebra
14.
Gastroenterology ; 156(6): 1788-1804.e13, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30641053

RESUMEN

BACKGROUND & AIMS: Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. METHODS: Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein-coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. RESULTS: Exposure to 17ß-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. CONCLUSIONS: In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. TRANSCRIPT PROFILING: The accession number in the Gene Expression Omnibus is GSE92544.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Neoplasias Hepáticas/metabolismo , Hígado/crecimiento & desarrollo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Pez Cebra/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Hepatocitos , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/patología , Regeneración Hepática , Masculino , Tamaño de los Órganos/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Receptores Acoplados a Proteínas G/genética , Factores Sexuales , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral/efectos de los fármacos , Pez Cebra , Proteínas de Pez Cebra/genética
15.
EMBO J ; 37(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30348863

RESUMEN

The Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that yap-/- mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis. Transcriptomic and metabolomic analyses reveal that Yap regulates expression of glucose transporter glut1, causing decreased glucose uptake and use for nucleotide biosynthesis in yap-/- mutants, and impaired glucose tolerance in adults. Nucleotide supplementation improves Yap deficiency phenotypes, indicating functional importance of glucose-fueled nucleotide biosynthesis. Yap-regulated glut1 expression and glucose uptake are conserved in mammals, suggesting that stimulation of anabolic glucose metabolism is an evolutionarily conserved mechanism by which the Hippo pathway controls organ growth. Together, our results reveal a central role for Hippo signaling in glucose metabolic homeostasis.


Asunto(s)
Glucosa/metabolismo , Hígado/embriología , Nucleótidos/biosíntesis , Transducción de Señal/fisiología , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Glucosa/genética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Nucleótidos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasa 3 , Transactivadores/genética , Proteínas Señalizadoras YAP , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
J Clin Invest ; 128(1): 294-308, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29202482

RESUMEN

Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma. GDF6-induced BMP signaling maintained a trunk neural crest gene signature in melanomas. Additionally, GDF6 repressed the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, thereby preventing differentiation, inhibiting cell death, and promoting tumor growth. GDF6 was specifically expressed in melanomas but not melanocytes. Moreover, GDF6 expression levels in melanomas were inversely correlated with patient survival. Our study has identified a fundamental role for GDF6 and BMP signaling in governing an embryonic cell gene signature to promote melanoma progression, thus providing potential opportunities for targeted therapy to treat GDF6-positive cancers.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Factor 6 de Diferenciación de Crecimiento/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/genética , Línea Celular Tumoral , Femenino , Factor 6 de Diferenciación de Crecimiento/genética , Células HEK293 , Humanos , Ligandos , Melanoma/genética , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas de Neoplasias/genética
17.
J Exp Med ; 214(12): 3519-3530, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29066577

RESUMEN

Regulatory T (T reg) cells are a specialized sublineage of T lymphocytes that suppress autoreactive T cells. Functional studies of T reg cells in vitro have defined multiple suppression mechanisms, and studies of T reg-deficient humans and mice have made clear the important role that these cells play in preventing autoimmunity. However, many questions remain about how T reg cells act in vivo. Specifically, it is not clear which suppression mechanisms are most important, where T reg cells act, and how they get there. To begin to address these issues, we sought to identify T reg cells in zebrafish, a model system that provides unparalleled advantages in live-cell imaging and high-throughput genetic analyses. Using a FOXP3 orthologue as a marker, we identified CD4-enriched, mature T lymphocytes with properties of T reg cells. Zebrafish mutant for foxp3a displayed excess T lymphocytes, splenomegaly, and a profound inflammatory phenotype that was suppressed by genetic ablation of lymphocytes. This study identifies T reg-like cells in zebrafish, providing both a model to study the normal functions of these cells in vivo and mutants to explore the consequences of their loss.


Asunto(s)
Linfocitos T Reguladores/inmunología , Pez Cebra/inmunología , Animales , Secuencia de Bases , Enfermedad Crónica , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis , Inflamación/patología , Linfocitos/metabolismo , Mutación/genética , Filogenia , Esplenomegalia/patología , Análisis de Supervivencia , Timocitos/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo
18.
Elife ; 62017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350298

RESUMEN

Thyroid cancer is common, yet the sequence of alterations that promote tumor formation are incompletely understood. Here, we describe a novel model of thyroid carcinoma in zebrafish that reveals temporal changes due to BRAFV600E. Through the use of real-time in vivo imaging, we observe disruption in thyroid follicle structure that occurs early in thyroid development. Combinatorial treatment using BRAF and MEK inhibitors reversed the developmental effects induced by BRAFV600E. Adult zebrafish expressing BRAFV600E in thyrocytes developed invasive carcinoma. We identified a gene expression signature from zebrafish thyroid cancer that is predictive of disease-free survival in patients with papillary thyroid cancer. Gene expression studies nominated TWIST2 as a key effector downstream of BRAF. Using CRISPR/Cas9 to genetically inactivate a TWIST2 orthologue, we suppressed the effects of BRAFV600E and restored thyroid morphology and hormone synthesis. These data suggest that expression of TWIST2 plays a role in an early step of BRAFV600E-mediated transformation.


Asunto(s)
Morfogénesis , Proteínas Proto-Oncogénicas B-raf/metabolismo , Glándula Tiroides/embriología , Glándula Tiroides/fisiología , Hormonas Tiroideas/metabolismo , Neoplasias de la Tiroides/patología , Proteína Relacionada con Twist 2/biosíntesis , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Proteínas Proto-Oncogénicas B-raf/genética , Proteína Relacionada con Twist 2/genética , Pez Cebra
19.
Proc Natl Acad Sci U S A ; 113(38): E5562-71, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27588899

RESUMEN

Selenium, an essential micronutrient known for its cancer prevention properties, is incorporated into a class of selenocysteine-containing proteins (selenoproteins). Selenoprotein H (SepH) is a recently identified nucleolar oxidoreductase whose function is not well understood. Here we report that seph is an essential gene regulating organ development in zebrafish. Metabolite profiling by targeted LC-MS/MS demonstrated that SepH deficiency impairs redox balance by reducing the levels of ascorbate and methionine, while increasing methionine sulfoxide. Transcriptome analysis revealed that SepH deficiency induces an inflammatory response and activates the p53 pathway. Consequently, loss of seph renders larvae susceptible to oxidative stress and DNA damage. Finally, we demonstrate that seph interacts with p53 deficiency in adulthood to accelerate gastrointestinal tumor development. Overall, our findings establish that seph regulates redox homeostasis and suppresses DNA damage. We hypothesize that SepH deficiency may contribute to the increased cancer risk observed in cohorts with low selenium levels.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Neoplasias Gastrointestinales/genética , Selenoproteínas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Neoplasias Gastrointestinales/patología , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Masculino , Oxidación-Reducción , Estrés Oxidativo/genética , Selenio/metabolismo , Selenoproteínas/metabolismo , Transcriptoma/genética , Pez Cebra/genética
20.
Nat Cell Biol ; 18(8): 886-896, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27428308

RESUMEN

The Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signalling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumour formation. Transcriptomic and metabolomic profiling identify that Yap1 reprograms glutamine metabolism. Yap1 directly enhances glutamine synthetase (glul) expression and activity, elevating steady-state levels of glutamine and enhancing the relative isotopic enrichment of nitrogen during de novo purine and pyrimidine biosynthesis. Genetic or pharmacological inhibition of GLUL diminishes the isotopic enrichment of nitrogen into nucleotides, suppressing hepatomegaly and the growth of liver cancer cells. Consequently, Yap-driven liver growth is susceptible to nucleotide inhibition. Together, our findings demonstrate that Yap1 integrates the anabolic demands of tissue growth during development and tumorigenesis by reprogramming nitrogen metabolism to stimulate nucleotide biosynthesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Transformación Celular Neoplásica/genética , Hígado/crecimiento & desarrollo , Fosfoproteínas/genética , Transactivadores/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/patología , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Fosfoproteínas/metabolismo , Factores de Transcripción , Proteínas Señalizadoras YAP , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...