Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Europace ; 26(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38591838

RESUMEN

AIMS: Recent trial data demonstrate beneficial effects of active rhythm management in patients with atrial fibrillation (AF) and support the concept that a low arrhythmia burden is associated with a low risk of AF-related complications. The aim of this document is to summarize the key outcomes of the 9th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). METHODS AND RESULTS: Eighty-three international experts met in Münster for 2 days in September 2023. Key findings are as follows: (i) Active rhythm management should be part of the default initial treatment for all suitable patients with AF. (ii) Patients with device-detected AF have a low burden of AF and a low risk of stroke. Anticoagulation prevents some strokes and also increases major but non-lethal bleeding. (iii) More research is needed to improve stroke risk prediction in patients with AF, especially in those with a low AF burden. Biomolecules, genetics, and imaging can support this. (iv) The presence of AF should trigger systematic workup and comprehensive treatment of concomitant cardiovascular conditions. (v) Machine learning algorithms have been used to improve detection or likely development of AF. Cooperation between clinicians and data scientists is needed to leverage the potential of data science applications for patients with AF. CONCLUSIONS: Patients with AF and a low arrhythmia burden have a lower risk of stroke and other cardiovascular events than those with a high arrhythmia burden. Combining active rhythm control, anticoagulation, rate control, and therapy of concomitant cardiovascular conditions can improve the lives of patients with AF.


Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control , Riesgo , Hemorragia , Anticoagulantes/uso terapéutico
2.
Front Cell Dev Biol ; 12: 1298007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304423

RESUMEN

Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.

3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069339

RESUMEN

3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Sistemas de Mensajero Secundario , AMP Cíclico , Miocitos Cardíacos/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo
5.
Circ Res ; 133(2): 177-192, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37325910

RESUMEN

BACKGROUND: A loss-of-function cardiac ryanodine receptor (RyR2) mutation, I4855M+/-, has recently been linked to a new cardiac disorder termed RyR2 Ca2+ release deficiency syndrome (CRDS) as well as left ventricular noncompaction (LVNC). The mechanism by which RyR2 loss-of-function causes CRDS has been extensively studied, but the mechanism underlying RyR2 loss-of-function-associated LVNC is unknown. Here, we determined the impact of a CRDS-LVNC-associated RyR2-I4855M+/- loss-of-function mutation on cardiac structure and function. METHODS: We generated a mouse model expressing the CRDS-LVNC-associated RyR2-I4855M+/- mutation. Histological analysis, echocardiography, ECG recording, and intact heart Ca2+ imaging were performed to characterize the structural and functional consequences of the RyR2-I4855M+/- mutation. RESULTS: As in humans, RyR2-I4855M+/- mice displayed LVNC characterized by cardiac hypertrabeculation and noncompaction. RyR2-I4855M+/- mice were highly susceptible to electrical stimulation-induced ventricular arrhythmias but protected from stress-induced ventricular arrhythmias. Unexpectedly, the RyR2-I4855M+/- mutation increased the peak Ca2+ transient but did not alter the L-type Ca2+ current, suggesting an increase in Ca2+-induced Ca2+ release gain. The RyR2-I4855M+/- mutation abolished sarcoplasmic reticulum store overload-induced Ca2+ release or Ca2+ leak, elevated sarcoplasmic reticulum Ca2+ load, prolonged Ca2+ transient decay, and elevated end-diastolic Ca2+ level upon rapid pacing. Immunoblotting revealed increased level of phosphorylated CaMKII (Ca2+-calmodulin dependent protein kinases II) but unchanged levels of CaMKII, calcineurin, and other Ca2+ handling proteins in the RyR2-I4855M+/- mutant compared with wild type. CONCLUSIONS: The RyR2-I4855M+/- mutant mice represent the first RyR2-associated LVNC animal model that recapitulates the CRDS-LVNC overlapping phenotype in humans. The RyR2-I4855M+/- mutation increases the peak Ca2+ transient by increasing the Ca2+-induced Ca2+ release gain and the end-diastolic Ca2+ level by prolonging Ca2+ transient decay. Our data suggest that the increased peak-systolic and end-diastolic Ca2+ levels may underlie RyR2-associated LVNC.


Asunto(s)
Cardiopatías Congénitas , Canal Liberador de Calcio Receptor de Rianodina , Animales , Humanos , Ratones , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiopatías Congénitas/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
6.
Biomed Pharmacother ; 162: 114577, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001181

RESUMEN

AIMS: Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. METHODS: To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. RESULTS: Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. CONCLUSION: Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.


Asunto(s)
Fibrilación Atrial , Animales , Ratones , Fibrilación Atrial/genética , Calcio/metabolismo , Homocigoto , Eliminación de Secuencia , Miocitos Cardíacos/metabolismo
7.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901835

RESUMEN

Increased adenosine A2A receptor (A2AR) expression and activation underlies a higher incidence of spontaneous calcium release in atrial fibrillation (AF). Adenosine A3 receptors (A3R) could counteract excessive A2AR activation, but their functional role in the atrium remains elusive, and we therefore aimed to address the impact of A3Rs on intracellular calcium homeostasis. For this purpose, we analyzed right atrial samples or myocytes from 53 patients without AF, using quantitative PCR, patch-clamp technique, immunofluorescent labeling or confocal calcium imaging. A3R mRNA accounted for 9% and A2AR mRNA for 32%. At baseline, A3R inhibition increased the transient inward current (ITI) frequency from 0.28 to 0.81 events/min (p < 0.05). Simultaneous stimulation of A2ARs and A3Rs increased the calcium spark frequency seven-fold (p < 0.001) and the ITI frequency from 0.14 to 0.64 events/min (p < 0.05). Subsequent A3R inhibition caused a strong additional increase in the ITI frequency (to 2.04 events/min; p < 0.01) and increased phosphorylation at s2808 1.7-fold (p < 0.001). These pharmacological treatments had no significant effects on L-type calcium current density or sarcoplasmic reticulum calcium load. In conclusion, A3Rs are expressed and blunt spontaneous calcium release at baseline and upon A2AR-stimulation in human atrial myocytes, pointing to A3R activation as a means to attenuate physiological and pathological elevations of spontaneous calcium release events.


Asunto(s)
Fibrilación Atrial , Receptores Purinérgicos P1 , Humanos , Adenosina/metabolismo , Fibrilación Atrial/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Homeostasis , Miocitos Cardíacos/metabolismo , Receptores Purinérgicos P1/metabolismo , ARN Mensajero/metabolismo , Retículo Sarcoplasmático/metabolismo
8.
JACC Basic Transl Sci ; 8(1): 1-15, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36777175

RESUMEN

Analysis of the spatio-temporal distribution of calcium sparks showed a preferential increase in sparks near the sarcolemma in atrial myocytes from patients with atrial fibrillation (AF), linked to higher ryanodine receptor (RyR2) phosphorylation at s2808 and lower calsequestrin-2 levels. Mathematical modeling, incorporating modulation of RyR2 gating, showed that only the observed combinations of RyR2 phosphorylation and calsequestrin-2 levels can account for the spatio-temporal distribution of sparks in patients with and without AF. Furthermore, we demonstrate that preferential calcium release near the sarcolemma is key to a higher incidence and amplitude of afterdepolarizations in atrial myocytes from patients with AF.

9.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835078

RESUMEN

Adenosine, an endogenous nucleoside, plays a critical role in maintaining homeostasis during stressful situations, such as energy deprivation or cellular damage. Therefore, extracellular adenosine is generated locally in tissues under conditions such as hypoxia, ischemia, or inflammation. In fact, plasma levels of adenosine in patients with atrial fibrillation (AF) are elevated, which also correlates with an increased density of adenosine A2A receptors (A2ARs) both in the right atrium and in peripheral blood mononuclear cells (PBMCs). The complexity of adenosine-mediated effects in health and disease requires simple and reproducible experimental models of AF. Here, we generate two AF models, namely the cardiomyocyte cell line HL-1 submitted to Anemonia toxin II (ATX-II) and a large animal model of AF, the right atrium tachypaced pig (A-TP). We evaluated the density of endogenous A2AR in those AF models. Treatment of HL-1 cells with ATX-II reduced cell viability, while the density of A2AR increased significantly, as previously observed in cardiomyocytes with AF. Next, we generated the animal model of AF based on tachypacing pigs. In particular, the density of the key calcium regulatory protein calsequestrin-2 was reduced in A-TP animals, which is consistent with the atrial remodelling shown in humans suffering from AF. Likewise, the density of A2AR in the atrium of the AF pig model increased significantly, as also shown in the biopsies of the right atrium of subjects with AF. Overall, our findings revealed that these two experimental models of AF mimicked the alterations in A2AR density observed in patients with AF, making them attractive models for studying the adenosinergic system in AF.


Asunto(s)
Fibrilación Atrial , Receptor de Adenosina A2A , Animales , Humanos , Adenosina/metabolismo , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Leucocitos Mononucleares/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Adenosina A2A/metabolismo , Porcinos
10.
Biomed Pharmacother ; 158: 114169, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36592495

RESUMEN

AIMS: Atrial fibrillation (AF) has been associated with excessive spontaneous calcium release, linked to cyclic AMP (cAMP)-dependent phosphorylation of calcium regulatory proteins. Because ß-blockers are expected to attenuate cAMP-dependent signaling, we aimed to examine whether the treatment of patients with ß-blockers affected the incidence of spontaneous calcium release events or transient inward currents (ITI). METHODS: The impact of treatment with commonly used ß-blockers was analyzed in human atrial myocytes from 371 patients using patch-clamp technique, confocal calcium imaging or immunofluorescent labeling. Data were analyzed using multivariate regression analysis taking into account potentially confounding effects of relevant clinical factors RESULTS: The L-type calcium current (ICa) density was diminished significantly in patients with chronic but not paroxysmal AF and the treatment of patients with ß-blockers did not affect ICa density in any group. By contrast, the ITI frequency was elevated in patients with either paroxysmal or chronic AF that did not receive treatment, and ß-blocker treatment reduced the frequency to levels observed in patients without AF. Confocal calcium imaging showed that ß-blocker treatment also reduced the calcium spark frequency in patients with AF to levels observed in those without AF. Furthermore, phosphorylation of the ryanodine receptor (RyR2) at Ser-2808 and phospholamban at Ser-16 was significantly lower in patients with AF that received ß-blockers. CONCLUSION: Together, our findings demonstrate that ß-blocker treatment may be of therapeutic utility to prevent spontaneous calcium release-induced atrial electrical activity; especially in patients with a history of paroxysmal AF displaying preserved ICa density.


Asunto(s)
Antagonistas Adrenérgicos beta , Fibrilación Atrial , Calcio , Humanos , Potenciales de Acción , Fibrilación Atrial/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Antagonistas Adrenérgicos beta/farmacología
11.
Circ Res ; 132(2): e59-e77, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36583384

RESUMEN

BACKGROUND: PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS: We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS: We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Serina , Ratones , Animales , Humanos , Isoproterenol/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Serina/metabolismo , Serina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Isoquinolinas/farmacología , Sulfonamidas/farmacología , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
Biomedicines ; 10(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35885069

RESUMEN

A hallmark of atrial fibrillation is an excess of spontaneous calcium release events, which can be mimicked by ß1- or ß2-adrenergic stimulation. Because ß1-adrenergic receptor blockers (ß1-blockers) are primarily used in clinical practice, we here examined the impact of ß2-adrenergic stimulation on spontaneous calcium release and assessed whether the R- and S-enantiomers of the non-selective ß- blocker carvedilol could reverse these effects. For this purpose, human atrial myocytes were isolated from patients undergoing cardiovascular surgery and subjected to confocal calcium imaging or immunofluorescent labeling of the ryanodine receptor (RyR2). Interestingly, the ß2-adrenergic agonist fenoterol increased the incidence of calcium sparks and waves to levels observed with the non-specific ß-adrenergic agonist isoproterenol. Moreover, fenoterol increased both the amplitude and duration of the sparks, facilitating their fusion into calcium waves. Subsequent application of the non ß-blocking R-Carvedilol enantiomer reversed these effects of fenoterol in a dose-dependent manner. R-Carvedilol also reversed the fenoterol-induced phosphorylation of the RyR2 at Ser-2808 dose-dependently, and 1 µM of either R- or S-Carvedilol fully reversed the effect of fenoterol. Together, these findings demonstrate that ß2-adrenergic stimulation alone stimulates RyR2 phosphorylation at Ser-2808 and spontaneous calcium release maximally, and points to carvedilol as a tool to attenuate the pathological activation of ß2-receptors.

13.
Acta Physiol (Oxf) ; 234(4): e13736, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34709723

RESUMEN

AIMS: It is unknown how ß-adrenergic stimulation affects calcium dynamics in individual RyR2 clusters and leads to the induction of spontaneous calcium waves. To address this, we analysed spontaneous calcium release events in green fluorescent protein (GFP)-tagged RyR2 clusters. METHODS: Cardiomyocytes from mice with GFP-tagged RyR2 or human right atrial tissue were subjected to immunofluorescent labelling or confocal calcium imaging. RESULTS: Spontaneous calcium release from single RyR2 clusters induced 91.4% ± 2.0% of all calcium sparks while 8.0% ± 1.6% were caused by release from two neighbouring clusters. Sparks with two RyR2 clusters had 40% bigger amplitude, were 26% wider, and lasted 35% longer at half maximum. Consequently, the spark mass was larger in two- than one-cluster sparks with a median and interquartile range for the cumulative distribution of 15.7 ± 20.1 vs 7.6 ± 5.7 a.u. (P < .01). ß2-adrenergic stimulation increased RyR2 phosphorylation at s2809 and s2815, tripled the fraction of two- and three-cluster sparks, and significantly increased the spark mass. Interestingly, the amplitude and mass of the calcium released from a RyR2 cluster were proportional to the SR calcium load, but the firing rate was not. The spark mass was also higher in 33 patients with atrial fibrillation than in 36 without (22.9 ± 23.4 a.u. vs 10.7 ± 10.9; P = .015). CONCLUSIONS: Most sparks are caused by activation of a single RyR2 cluster at baseline while ß-adrenergic stimulation doubles the mass and the number of clusters per spark. This mimics the shift in the cumulative spark mass distribution observed in myocytes from patients with atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Canal Liberador de Calcio Receptor de Rianodina , Adrenérgicos , Animales , Fibrilación Atrial/metabolismo , Calcio/metabolismo , Señalización del Calcio , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
14.
Methods ; 203: 542-557, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34197925

RESUMEN

Fundamental to the functional behavior of cardiac muscle is that the cardiomyocytes are integrated as a functional syncytium. Disrupted electrical activity in the cardiac tissue can lead to serious complications including cardiac arrhythmias. Therefore, it is important to study electrophysiological properties of the cardiac tissue. With advancements in stem cell research, protocols for the production of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been established, providing great potential in modelling cardiac arrhythmias and drug testing. The hiPSC-CM model can be used in conjunction with electrophysiology-based platforms to examine the electrical activity of the cardiac tissue. Techniques for determining the myocardial electrical activity include multielectrode arrays (MEAs), optical mapping (OM), and patch clamping. These techniques provide critical approaches to investigate cardiac electrical abnormalities that underlie arrhythmias.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción/fisiología , Arritmias Cardíacas/genética , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología
15.
Methods ; 203: 364-377, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34144175

RESUMEN

The discovery and application of human-induced pluripotent stem cells (hiPSCs) have been instrumental in the investigation of the pathophysiology of cardiovascular diseases. Patient-specific hiPSCs can now be generated, genome-edited, and subsequently differentiated into various cell types and used for regenerative medicine, disease modeling, drug testing, toxicity screening, and 3D tissue generation. Modulation of the retinoic acid signaling pathway has been shown to direct cardiomyocyte differentiation towards an atrial lineage. A variety of studies have successfully differentiated patient-specific atrial cardiac myocytes (hiPSC-aCM) and atrial engineered heart tissue (aEHT) that express atrial specific genes (e.g., sarcolipin and ANP) and exhibit atrial electrophysiological and contractility profiles. Identification of protocols to differentiate atrial cells from patients with atrial fibrillation and other inherited diseases or creating disease models using genetic mutation studies has shed light on the mechanisms of atrial-specific diseases and identified the efficacy of atrial-selective pharmacological compounds. hiPSC-aCMs and aEHTs can be used in drug discovery and drug screening studies to investigate the efficacy of atrial selective drugs on atrial fibrillation models. Furthermore, hiPSC-aCMs can be effective tools in studying the mechanism, pathophysiology and treatment options of atrial fibrillation and its genetic underpinnings. The main limitation of using hiPSC-CMs is their immature phenotype compared to adult CMs. A wide range of approaches and protocols are used by various laboratories to optimize and enhance CM maturation, including electrical stimulation, culture time, biophysical cues and changes in metabolic factors.


Asunto(s)
Fibrilación Atrial , Células Madre Pluripotentes Inducidas , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Diferenciación Celular , Descubrimiento de Drogas , Humanos , Miocitos Cardíacos/metabolismo
16.
Cardiovasc Res ; 118(4): 1033-1045, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33788918

RESUMEN

AIMS: Atrial fibrillation (AF) has been associated with intracellular calcium disturbances in human atrial myocytes, but little is known about the potential influence of sex and we here aimed to address this issue. METHODS AND RESULTS: Alterations in calcium regulatory mechanisms were assessed in human atrial myocytes from patients without AF or with long-standing persistent or permanent AF. Patch-clamp measurements revealed that L-type calcium current (ICa) density was significantly smaller in males with than without AF (-1.15 ± 0.37 vs. -2.06 ± 0.29 pA/pF) but not in females with AF (-1.88 ± 0.40 vs. -2.21 ± 0.0.30 pA/pF). In contrast, transient inward currents (ITi) were more frequent in females with than without AF (1.92 ± 0.36 vs. 1.10 ± 0.19 events/min) but not in males with AF. Moreover, confocal calcium imaging showed that females with AF had more calcium spark sites than those without AF (9.8 ± 1.8 vs. 2.2 ± 1.9 sites/µm2) and sparks were wider (3.0 ± 0.3 vs. 2.2 ± 0.3 µm) and lasted longer (79 ± 6 vs. 55 ± 8 ms), favouring their fusion into calcium waves that triggers ITIs and afterdepolarizations. This was linked to higher ryanodine receptor phosphorylation at s2808 in women with AF, and inhibition of adenosine A2A or beta-adrenergic receptors that modulate s2808 phosphorylation was able to reduce the higher incidence of ITI in women with AF. CONCLUSION: Perturbations of the calcium homoeostasis in AF is sex-dependent, concurring with increased spontaneous SR calcium release-induced electrical activity in women but not in men, and with diminished ICa density in men only.


Asunto(s)
Fibrilación Atrial , Calcio , Calcio/metabolismo , Señalización del Calcio/fisiología , Femenino , Homeostasis , Humanos , Masculino , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
17.
FASEB J ; 36(1): e22051, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861058

RESUMEN

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.


Asunto(s)
Fibrilación Atrial/metabolismo , Citoesqueleto/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Fibrilación Atrial/genética , Citoesqueleto/genética , Atrios Cardíacos/metabolismo , Humanos , Ratones , Ratones Noqueados , ARN Largo no Codificante/genética
18.
Curr Protoc ; 1(12): e320, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34958715

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal inherited cardiac arrhythmia condition, triggered by physical or acute emotional stress, that predominantly expresses early in life. Gain-of-function mutations in the cardiac ryanodine receptor gene (RYR2) account for the majority of CPVT cases, causing substantial disruption of intracellular calcium (Ca2+ ) homeostasis particularly during the periods of ß-adrenergic receptor stimulation. However, the highly variable penetrance, patient outcomes, and drug responses observed in clinical practice remain unexplained, even for patients with well-established founder RyR2 mutations. Therefore, investigation of the electrophysiological consequences of CPVT-causing RyR2 mutations is crucial to better understand the pathophysiology of the disease. The development of strategies for reprogramming human somatic cells to human induced pluripotent stem cells (hiPSCs) has provided a unique opportunity to study inherited arrhythmias, due to the ability of hiPSCs to differentiate down a cardiac lineage. Employment of genome editing enables generation of disease-specific cell lines from healthy and diseased patient-derived hiPSCs, which subsequently can be differentiated into cardiomyocytes. This paper describes the means for establishing an hiPSC-based model of CPVT in order to recapitulate the disease phenotype in vitro and investigate underlying pathophysiological mechanisms. The framework of this approach has the potential to contribute to disease modeling and personalized medicine using hiPSC-derived cardiomyocytes. © 2021 Wiley Periodicals LLC.


Asunto(s)
Células Madre Pluripotentes Inducidas , Taquicardia Ventricular , Humanos , Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética
19.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831263

RESUMEN

Both, the decreased L-type Ca2+ current (ICa,L) density and increased spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), have been associated with atrial fibrillation (AF). In this study, we tested the hypothesis that remodeling of 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signaling is linked to these compartment-specific changes (up- or down-regulation) in Ca2+-handling. Perforated patch-clamp experiments were performed in atrial myocytes from 53 patients with AF and 104 patients in sinus rhythm (Ctl). A significantly higher frequency of transient inward currents (ITI) activated by spontaneous Ca2+ release was confirmed in myocytes from AF patients. Next, inhibition of PKA by H-89 promoted a stronger effect on the ITI frequency in these myocytes compared to myocytes from Ctl patients (7.6-fold vs. 2.5-fold reduction), while the ß-agonist isoproterenol (ISO) caused a greater increase in Ctl patients (5.5-fold vs. 2.1-fold). ICa,L density was larger in myocytes from Ctl patients at baseline (p < 0.05). However, the effect of ISO on ICa,L density was only slightly stronger in AF than in Ctl myocytes (3.6-fold vs. 2.7-fold). Interestingly, a significant reduction of ICa,L and Ca2+ sparks was observed upon Ca2+/Calmodulin-dependent protein kinase II inhibition by KN-93, but this inhibition had no effect on ITI. Fluorescence resonance energy transfer (FRET) experiments showed that although AF promoted cytosolic desensitization to ß-adrenergic stimulation, ISO increased cAMP to similar levels in both groups of patients in the L-type Ca2+ channel and ryanodine receptor compartments. Basal cAMP signaling also showed compartment-specific regulation by phosphodiesterases in atrial myocytes from 44 Ctl and 43 AF patients. Our results suggest that AF is associated with opposite changes in compartmentalized PKA/cAMP-dependent regulation of ICa,L (down-regulation) and ITI (up-regulation).


Asunto(s)
Fibrilación Atrial/metabolismo , Señalización del Calcio , AMP Cíclico/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Anciano , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Carvedilol/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores Adrenérgicos beta/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo
20.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801676

RESUMEN

Atrial fibrillation (AF) is the most common form of cardiac arrhythmia seen in clinical practice. While some clinical parameters may predict the transition from paroxysmal to persistent AF, the molecular mechanisms behind the AF perpetuation are poorly understood. Thus, oxidative stress, calcium overload and inflammation, among others, are believed to be involved in AF-induced atrial remodelling. Interestingly, adenosine and its receptors have also been related to AF development and perpetuation. Here, we investigated the expression of adenosine A2A receptor (A2AR) both in right atrium biopsies and peripheral blood mononuclear cells (PBMCs) from non-dilated sinus rhythm (ndSR), dilated sinus rhythm (dSR) and AF patients. In addition, plasma adenosine content and adenosine deaminase (ADA) activity in these subjects were also determined. Our results revealed increased A2AR expression in the right atrium from AF patients, as previously described. Interestingly, increased levels of adenosine content and reduced ADA activity in plasma from AF patients were detected. An increase was observed when A2AR expression was assessed in PBMCs from AF subjects. Importantly, a positive correlation (P=0.001) between A2AR expression in the right atrium and PBMCs was observed. Overall, these results highlight the importance of the A2AR in AF and suggest that the evaluation of this receptor in PBMCs may be potentially be useful in monitoring disease severity and the efficacy of pharmacological treatments in AF patients.


Asunto(s)
Fibrilación Atrial/sangre , Leucocitos Mononucleares/citología , Receptor de Adenosina A2A/sangre , Regulación hacia Arriba , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Anciano , Anciano de 80 o más Años , Remodelación Atrial , Femenino , Células HEK293 , Atrios Cardíacos , Humanos , Masculino , Microscopía Confocal , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...