Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Commun Med (Lond) ; 4(1): 52, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504093

RESUMEN

BACKGROUND: Among people living with HIV, elite controllers (ECs) maintain an undetectable viral load, even without receiving anti-HIV therapy. In non-EC patients, this therapy leads to marked improvement, including in immune parameters, but unlike ECs, non-EC patients still require ongoing treatment and experience co-morbidities. In-depth, comprehensive immune analyses comparing EC and treated non-EC patients may reveal subtle, consistent differences. This comparison could clarify whether elevated circulating interferon-alpha (IFNα) promotes widespread immune cell alterations and persists post-therapy, furthering understanding of why non-EC patients continue to need treatment. METHODS: Levels of IFNα in HIV-infected EC and treated non-EC patients were compared, along with blood immune cell subset distribution and phenotype, and functional capacities in some cases. In addition, we assessed mechanisms potentially associated with IFNα overload. RESULTS: Treatment of non-EC patients results in restoration of IFNα control, followed by marked improvement in distribution numbers, phenotypic profiles of blood immune cells, and functional capacity. These changes still do not lead to EC status, however, and IFNα can induce these changes in normal immune cell counterparts in vitro. Hypothesizing that persistent alterations could arise from inalterable effects of IFNα at infection onset, we verified an IFNα-related mechanism. The protein induces the HIV coreceptor CCR5, boosting HIV infection and reducing the effects of anti-HIV therapies. EC patients may avoid elevated IFNα following on infection with a lower inoculum of HIV or because of some unidentified genetic factor. CONCLUSIONS: Early control of IFNα is essential for better prognosis of HIV-infected patients.


The treatment for HIV, known as antiretroviral therapy (ART), does not cure HIV but enables individuals to live longer, healthier lives. In this study, we compared immune responses between elite controllers (ECs), who control their HIV infection without any treatment, and ART-treated and untreated patients. We demonstrate that IFNα, a small protein crucial in controlling immune system, is excessively produced at the onset of HIV infection and at levels that persist, resulting in poor HIV control without therapy. We show a mechanism for lack of control of HIV by IFNα. While inhibiting HIV, IFNα also simultaneously increases the HIV co-receptor, CCR5, thereby facilitating virus entry into the target cell. This is avoided by ECs which we hypothesize is associated with a lower infectious inoculum of HIV.

2.
Commun Med (Lond) ; 4(1): 53, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504106

RESUMEN

BACKGROUND: A complete understanding of the different steps of HIV replication and an effective drug combination have led to modern antiretroviral regimens that block HIV replication for decades, but these therapies are not curative and must be taken for life. "Elite controllers" (ECs) is a term for the 0.5% of HIV-infected persons requiring no antiretroviral therapy, whose status may point the way toward a functional HIV cure. Defining the mechanisms of this control may be key to understanding how to replicate this functional cure in others. METHODS: In ECs and untreated non-EC patients, we compared IFNα serum concentration, distribution of immune cell subsets, and frequency of cell markers associated with immune dysfunction. We also investigated the effect of an elevated dose of IFNα on distinct subsets within dendritic cells, natural killer cells, and CD4+ and CD8 + T cells. RESULTS: Serum IFNα was undetectable in ECs, but all immune cell subsets from untreated non-EC patients were structurally and functionally impaired. We also show that the altered phenotype and function of these cell subsets in non-EC patients can be recapitulated when cells are stimulated in vitro with high-dose IFNα. CONCLUSIONS: Elevated IFNα is a key mediator of HIV pathogenesis.


Currently, HIV infection is not curable, but infected individuals can manage their condition by taking daily doses of antiretroviral therapy. Some individuals, known as elite controllers (ECs), control their infection without antiretroviral treatment, and studying how their immune system responds to HIV exposure could lead to a potential cure for others. Here, we compare immune cell responses between ECs and untreated non-ECs. We find that IFNα, a small protein with an important role in controlling white blood cell activity, is produced in excess in immune cells from non-ECs compared with ECs during early infection. This insight provides an important clue for the future development of a targeted cure for HIV.

4.
Geroscience ; 46(2): 2681-2695, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141157

RESUMEN

The increasing aging of the human population is currently and for the coming decades a major public health issue in many countries, requiring the implementation of global public health policies promoting healthy and successful aging. Individuals are not equal in the face of aging and some can present exceptional healthspan and/or lifespan, which are notably influenced by both genetic and environmental factors. Research and studies on human aging, healthy aging and longevity should rely in particular on cohorts of long-lived individuals, also including biological samples allowing studies on the biology of aging and longevity. In this manuscript, we provide for the first time a complete description of the CEPH (Centre d'Etude du Polymophisme Humain) Aging cohort, an exceptional cohort recruited during the 90s to 2000s, including more than 1700 French long-lived individuals (≥ 90 years old) born between 1875 and 1916 as well as for some of them their siblings and offspring. Among the participants, 1265 were centenarians, including 255 semi-supercentenarians ([105-110] years old) and 25 supercentenarians (≥ 110 years old). The available anthropometric, epidemiologic and clinical data for the cohort participants are described and especially the collection of blood-derived biological samples associated with the cohort which includes DNA, cryopreserved cells and cell lines, plasma, and serum. This biological collection from the first cohort of centenarians in the world is an inestimable resource for ongoing and future molecular, cellular, and functional studies aimed at deciphering the mechanisms of human (successful) aging and longevity.


Asunto(s)
Bancos de Muestras Biológicas , Longevidad , Anciano de 80 o más Años , Humanos , Longevidad/genética , Envejecimiento/genética , Estudios Longitudinales , Estado de Salud
5.
Front Genet ; 14: 1321280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090154

RESUMEN

Circulating cell-free nucleic acids (ccfNAs) of plasma are a remarkable source of genetic, epigenetic and transcriptomic materials originating from different cells, tissues and organs of an individual. They have been increasingly studied over the past decade as they can carry several important pieces of information about the health status of an individual, which makes them biomarkers of choice for non-invasive diagnosis of numerous diseases and health conditions. However, few studies have investigated variations of plasma ccfNAs in healthy subjects, particularly in relation to aging, healthy aging and longevity, despite the great variability of these biological processes among individuals. Here, we reviewed several studies that focused on the analysis of circulating cell-free DNA (ccfDNA) and microRNAs (ccfmiRNAs) during aging and in the elderly, including some on exceptionally long-lived individuals, i.e., centenarians. After a brief overview of the types, origins and functions of plasma ccfNAs, we described the variations of both ccfDNA and ccfmiRNAs during aging as well as the identification of several potential ccfDNA-based and ccfmiRNA-based biomarkers of aging, healthy aging and/or longevity. We finally highlighted some prospects offered by ccfNAs for the understanding and improvement of healthy aging and longevity.

7.
Front Genet ; 14: 1189212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323676
8.
Res Sq ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214795

RESUMEN

Like EC, we find that ART-treated patients control serum IFNα concentration and show few immune cell alterations enabling a healthy but fragile medical status. However, treatment interruption leads to elevated IFNα reflecting virus production indicating that like EC, ART does not achieve a virological cure. The immune system becomes overwhelmed by multiple immune cell abnormalities as found in untreated patients. These are chiefly mediated by elevated IFNα inducing signaling checkpoints abnormalities, including PD1, in cytotoxic immune cells. Importantly, during acute infection, elevated IFNα correlated with HIV load and we found that IFNα enhances CCR5, the HIV coreceptor in CD4+ T-cells, impairing its anti-viral response and accounting for the pathogenic vicious cycle: HIV → IFNα ↗ → infected CD4+ T-cells ↗ →HIV ↗. This study opens immunotherapeutic perspectives showing the need to control IFNα in order to convert ART patients into EC.

9.
Res Sq ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37215045

RESUMEN

Advances in HIV therapy came from understanding its replication. Further progress toward "functional cure" -no therapy needed as found in Elite Controllers (EC)- may come from insights in pathogenesis and avoidance by EC. Here we show that all immune cells from HIV-infected persons are impaired in non-EC, but not in EC. Since HIV infects few cell types, these results suggest an additional mediator of pathogenesis. We identify that mediator as elevated pathogenic IFNα, controlled by EC likely by their preserved potent NK-cells and later by other killer cells. Since the earliest days of infection predict outcome genetic or chance events must be key to EC, and since we found no unique immune parameter at the onset, we suggest a chance infection with a lower HIV inoculum. These results offer an additional approach toward functional cure: a judicious targeting of IFNα for all non-EC patients.

10.
Methods Mol Biol ; 2621: 91-109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37041442

RESUMEN

Microsatellites are short tandem repeats of one to six nucleotides that are highly polymorphic and extensively used as genetic markers in numerous biomedical applications, including the detection of microsatellite instability (MSI) in cancer. The standard analytical method for microsatellite analysis relies on PCR amplification followed by capillary electrophoresis or, more recently, next-generation sequencing (NGS). However, their amplification during PCR generates undesirable frameshift products known as stutter peaks caused by polymerase slippage, complicating data analysis and interpretation, while very few alternative methods for microsatellite amplification have been developed to reduce the formation of these artifacts. In this context, the recently developed low-temperature recombinase polymerase amplification (LT-RPA) is an isothermal DNA amplification method at low temperature (32 °C) that drastically reduces and sometimes completely abolishes the formation of stutter peaks. LT-RPA greatly simplifies the genotyping of microsatellites and improves the detection of MSI in cancer. In this chapter, we describe in detail all the experimental steps necessary for the development of LT-RPA simplex and multiplex assays for microsatellite genotyping and MSI detection, including the design, optimization, and validation of the assays combined with capillary electrophoresis or NGS.


Asunto(s)
Inestabilidad de Microsatélites , Neoplasias , Humanos , Recombinasas/genética , Genotipo , Repeticiones de Microsatélite , ADN/genética , Nucleotidiltransferasas , Neoplasias/genética
11.
J Invest Dermatol ; 143(5): 711-721.e7, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36610660

RESUMEN

Dupilumab is a therapeutic antibody targeting IL-4 and IL-13 receptor subunit alpha used for the treatment of patients with atopic dermatitis (AD). Cases of psoriasis-like reactions induced under dupilumab treatment (dupilumab-induced psoriatic eruption [DI-Pso]) for AD were recently reported. To understand the pathogenesis of DI-Pso, we performed gene expression profiling studies on skin biopsies of DI-Pso (n = 7) compared with those of plaque psoriasis, AD, and healthy controls (n = 4 each). Differential gene expression was performed using enrichment and Gene Ontology analysis. Gene expression was validated by qPCR, and protein levels were assessed by immunohistochemistry. Transcriptomic and protein analysis of DI-Pso compared with that of healthy controls, plaque psoriasis, and AD skins revealed activation of T helper 17/IL-23 pathways associated with a significant expression of IL-36, surrogate marker of pustular psoriasis. By contrast, T helper 2 representative genes' expression was strongly decreased in DI-Pso across comparison. Matching analysis with public data of pustular psoriasis skin corroborated that DI-Pso and pustular psoriasis upstream regulators overlap, greater than the overlap with plaque psoriasis. Furthermore, DI-Pso showed strongly decreased expression of many barrier skin genes compared with healthy controls, plaque psoriasis, and AD. Our data indicate that the pathogenesis of DI-Pso relied on a shift of skin immune responses from a T helper 2 to an IL-36 and T helper 17 polarization and on intensified skin barrier alterations.


Asunto(s)
Dermatitis Atópica , Exantema , Psoriasis , Humanos , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/genética , Interleucina-4/genética , Interleucina-13/genética , Psoriasis/tratamiento farmacológico , Psoriasis/genética
12.
Aging (Albany NY) ; 14(19): 7718-7733, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36202132

RESUMEN

Aging is a progressive time-dependent biological process affecting differentially individuals, who can sometimes present exceptional longevity. Epigenetic alterations are one of the hallmarks of aging, which comprise the epigenetic drift and clock at DNA methylation level. In the present study, we estimated the DNA methylation-based age (DNAmage) using four epigenetic clocks based on a small number of CpGs in French centenarians and semi-supercentenarians (CSSC, n=214) as well as nonagenarians' and centenarians' offspring (NCO, n=143) compared to individuals from the French general population (CG, n=149). DNA methylation analysis of the nine CpGs included in the epigenetic clocks showed high correlation with chronological age (-0.66>R>0.54) and also the presence of an epigenetic drift for four CpGs that was only visible in CSSC. DNAmage analysis showed that CSSC and to a lesser extend NCO present a younger DNAmage than their chronological age (15-28.5 years for CSSC, 4.4-11.5 years for NCO and 4.2-8.2 years for CG), which were strongly significant in CSSC compared to CG (p-values<2.2e-16). These differences suggest that epigenetic aging and potentially biological aging are slowed in exceptionally long-lived individuals and that epigenetic clocks based on a small number of CpGs are sufficient to reveal alterations of the global epigenetic clock.


Asunto(s)
Centenarios , Epigénesis Genética , Anciano de 80 o más Años , Humanos , Islas de CpG/genética , Epigenómica , Metilación de ADN , Envejecimiento/genética
13.
Sci Rep ; 12(1): 4684, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304543

RESUMEN

Lymphoblastoid cell lines (LCLs) derive from blood infected in vitro by Epstein-Barr virus and were used in several genetic, transcriptomic and epigenomic studies. Although few changes were shown between LCL and blood genotypes (SNPs) validating their use in genetics, more were highlighted for other genomic features and/or in their transcriptome and epigenome. This could render them less appropriate for these studies, notably when blood DNA could still be available. Here we developed a simple, high-throughput and cost-effective real-time PCR approach allowing to distinguish blood from LCL DNA samples based on the presence of EBV relative load and rearranged T-cell receptors γ and ß. Our approach was able to achieve 98.5% sensitivity and 100% specificity on DNA of known origin (458 blood and 316 LCL DNA). It was further applied to 1957 DNA samples from the CEPH Aging cohort comprising DNA of uncertain origin, identifying 784 blood and 1016 LCL DNA. A subset of these DNA was further analyzed with an epigenetic clock indicating that DNA extracted from blood should be preferred to LCL for DNA methylation-based age prediction analysis. Our approach could thereby be a powerful tool to ascertain the origin of DNA in old collections prior to (epi)genomic studies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Línea Celular , ADN/genética , Epigenómica , Herpesvirus Humano 4/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Adv Exp Med Biol ; 1361: 75-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35230684

RESUMEN

Microsatellite instability (MSI) is a genetic alteration due to a deficiency of the DNA mismatch repair system, where microsatellites accumulate insertions/deletions. This phenotype has been extensively characterized in colorectal cancer and is also sought in the context of Lynch syndrome diagnosis. It has recently been described in dozens of cancer types from whole genome/exome sequencing data, bearing some prognostic information. Moreover, MSI has also proven to be a major predicator of the response to immune checkpoint blockade therapy in solid cancer patients. Among the different methods developed for MSI detection in cancer, next-generation sequencing (NGS) is a promising and versatile technology offering many possibilities and advantages in diverse clinical applications compared to the gold standard PCR and capillary electrophoresis approach. NGS could notably increase the number of analyzed microsatellites and potentially be used to analyze other genetic alterations required for precision oncology. However, it requires the development of robust new computational algorithms for the analysis of NGS microsatellite data. In this chapter, we describe the different approaches developed for the assessment of MSI from NGS data in cancer, including the different microsatellite panels and computational algorithms proposed, highlighting their advantages and drawbacks, and their evaluation in different clinical applications.


Asunto(s)
Neoplasias Colorrectales , Neoplasias , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión
15.
Sci Rep ; 10(1): 15652, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973211

RESUMEN

Several blood-based age prediction models have been developed using less than a dozen to more than a hundred DNA methylation biomarkers. Only one model (Z-P1) based on pyrosequencing has been developed using DNA methylation of a single locus located in the ELOVL2 promoter, which is considered as one of the best age-prediction biomarker. Although multi-locus models generally present better performances compared to the single-locus model, they require more DNA and present more inter-laboratory variations impacting the predictions. Here we developed 17,018 single-locus age prediction models based on DNA methylation of the ELOVL2 promoter from pooled data of four different studies (training set of 1,028 individuals aged from 0 and 91 years) using six different statistical approaches and testing every combination of the 7 CpGs, aiming to improve the prediction performances and reduce the effects of inter-laboratory variations. Compared to Z-P1 model, three statistical models with the optimal combinations of CpGs presented improved performances (MAD of 4.41-4.77 in the testing set of 385 individuals) and no age-dependent bias. In an independent testing set of 100 individuals (19-65 years), we showed that the prediction accuracy could be further improved by using different CpG combinations and increasing the number of technical replicates (MAD of 4.17).


Asunto(s)
Envejecimiento/sangre , Envejecimiento/genética , Metilación de ADN , Elongasas de Ácidos Grasos/genética , Sitios Genéticos/genética , Laboratorios , Regiones Promotoras Genéticas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Islas de CpG/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Oncol Lett ; 20(2): 1999-2006, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32724446

RESUMEN

DNA hypomethylation of long interspersed repetitive DNA retrotransposon (LINE-1) and Alu repeats elements of short interspersed elements family (SINEs) is an early event in carcinogenesis that causes transcriptional activation and leads to chromosomal instability. In the current study, DNA methylation levels of LINE-1 and Alu repeats were analyzed in tumoral tissues of invasive breast cancer in a Tunisian cohort and its association with the clinicopathological features of patients was defined. DNA methylation of LINE-1 and Alu repeats were analyzed using pyrosequencing in 61 invasive breast cancers. Median values observed for DNA methylation of LINE-1 and Alu repeats were considered as the cut-off (59.81 and 18.49%, respectively). The results of the current study demonstrated a positive correlation between DNA methylation levels of LINE-1 and Alu repeats (rho=0.284; P<0.03). DNA hypomethylation of LINE-1 was also indicated to be associated with low grade (P=0.023). To the best of our knowledge, the current study is the first study regarding DNA methylation of LINE-1 and Alu repeats element in breast cancer of the Tunisian population. The results of the current study suggest that, since hypomethylation of LINE-1 is associated with low grade, it could be used as a biomarker for prognosis for patients with breast cancer.

18.
Eur Respir J ; 55(2)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806714

RESUMEN

The clinical significance of the BRAF V600E mutation in adult Langerhans cell histiocytosis (LCH), including pulmonary Langerhans cell histiocytosis (PLCH), is not well understood. Similarly, the spectrum of molecular alterations involved in adult LCH has not been fully delineated. To address these issues, we genotyped a large number of adult LCH biopsies and searched for an association of identified molecular alterations with clinical presentation and disease outcome.Biopsies from 117 adult LCH patients, 83 with PLCH (median age 36.4 years, 56 females, 38 multisystem disease, 79 single system disease, 65 current smokers) were genotyped for the BRAF V600E mutation. In 69 cases, LCH lesions were also genotyped by whole-exome sequencing (WES) or targeted gene panel next-generation sequencing (NGS). Cox models were used to estimate the association of baseline characteristics with the hazard of LCH progression.MAPK pathway alterations were detected in 59 out of 69 cases (86%) (BRAF V600E mutation: 36%, BRAF N486_P490 deletion: 28%, MAP2K1 mutations: 15%, isolated NRAS Q61 mutations: 4%), while KRAS mutations were virtually absent in PLCH lesions. The BRAF V600E mutation was not associated with LCH presentation at diagnosis, including smoking status and lung function, in PLCH patients. BRAF V600E status did not influence the risk of LCH progression over time.Thus, MAPK alterations are present in most lesions from adult LCH patients, particularly in PLCH. Unlike reports in paediatric LCH, BRAF V600E genotyping did not provide additional information on disease outcome. The search for alterations involved in the MAPK pathway, including BRAF deletions, is useful for guiding targeted treatment in selected patients with refractory progressive LCH.


Asunto(s)
Histiocitosis de Células de Langerhans , Proteínas Proto-Oncogénicas B-raf , Adulto , Niño , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Histiocitosis de Células de Langerhans/genética , Humanos , Pulmón , Mutación , Proteínas Proto-Oncogénicas B-raf/genética
19.
Nucleic Acids Res ; 47(21): e141, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31584085

RESUMEN

Microsatellites are polymorphic short tandem repeats of 1-6 nucleotides ubiquitously present in the genome that are extensively used in living organisms as genetic markers and in oncology to detect microsatellite instability (MSI). While the standard analysis method of microsatellites is based on PCR followed by capillary electrophoresis, it generates undesirable frameshift products known as 'stutter peaks' caused by the polymerase slippage that can greatly complicate the analysis and interpretation of the data. Here we present an easy multiplexable approach replacing PCR that is based on low temperature isothermal amplification using recombinase polymerase amplification (LT-RPA) that drastically reduces and sometimes completely abolishes the formation of stutter artifacts, thus greatly simplifying the calling of the alleles. Using HT17, a mononucleotide DNA repeat that was previously proposed as an optimal marker to detect MSI in tumor DNA, we showed that LT-RPA improves the limit of detection of MSI compared to PCR up to four times, notably for small deletions, and simplifies the identification of the mutant alleles. It was successfully applied to clinical colorectal cancer samples and enabled detection of MSI. This easy-to-handle, rapid and cost-effective approach may deeply improve the analysis of microsatellites in several biological and clinical applications.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales , ADN/genética , Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Humanos , Temperatura
20.
Sci Rep ; 9(1): 8862, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222117

RESUMEN

DNA methylation has been identified as the most promising molecular biomarker for the prediction of age. Several DNA methylation-based models have been proposed for age prediction based on blood samples, using mainly pyrosequencing. These methods present different performances for age prediction and have rarely, if ever, been evaluated and intercompared in an independent validation study. Here, for the first time, we evaluate and compare six blood-based age prediction models (Bekaert1, Park2, Thong3, Weidner4, and the Zbiec-Piekarska 15 and Zbiec-Piekarska 26), using DNA methylation analysis by pyrosequencing on 100 blood samples from French individuals aged between 19-65 years. For each model, we perform correlation analysis and evaluate age-prediction performance (mean absolute deviation (MAD) and standard error of the estimate (SEE)). The best age-prediction performances were found with the Bekaert and Thong models (MAD of 4.5-5.2, SEE of 6.8-7.2), followed by the Zbiec-Piekarska 1 model (MAD of 6.8 and SEE of 9.2), while the Park, Weidner and Zbiec-Piekarska 2 models presented lower performances (MAD of 7.2-8.7 and SEE of 9.2-10.3). Given these results, we recommend performing systematic, independent evaluation of all age prediction models on a same cohort to validate the different models and compare their performance.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , ADN/sangre , Adulto , Anciano , Femenino , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...