Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133506, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237435

RESUMEN

Contaminants, including naturally occurring radioactive material (NORM) of the 238-uranium and 232-thorium decay series, have been recognized as a global research priority to inform offshore petroleum infrastructure decommissioning decisions. This study aimed to characterize pipeline scale retrieved from a decommissioned subsea well tubular pipe through high-resolution elemental mapping and isotopic analysis. This was achieved by utilizing transmission electron microscopy, Synchrotron x-ray fluorescence, photostimulated luminescence autoradiography and Isotope Ratio Mass Spectrometry. The scale was identified as baryte (BaSO4) forming a dense crystalline matrix, with heterogenous texture and elongated crystals. The changing chemical and physical microenvironment within the pipe influenced the gradual growth rate of baryte over the production life of this infrastructure. A distinct compositional banding of baryte and celestine (SrSO4) bands was observed. Radioactivity attributed by the presence of radionuclides (226Ra, 228Ra) throughout the scale was strongly correlated with baryte. From the detailed scale characterization, we can infer the baryte scale gradually formed within the internals of the tubular well pipe along the duration of production (i.e., 17 years). This new knowledge and insight into the characteristics and formation of petroleum waste products will assist with decommissioning planning to mitigate potential radiological risks to marine ecosystems.

2.
Environ Sci Technol ; 58(1): 440-448, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38108297

RESUMEN

A novel binding layer (BL) as part of the diffusive gradients in thin films (DGT) technique was developed for the two-dimensional visualization and quantification of labile phosphorus (P) in soils. This BL was designed for P detection by synchrotron-based X-ray fluorescence microscopy (XFM). It differs from the conventional DGT BL as the hydrogel is eliminated to overcome the issue that the fluorescent X-rays of P are detected mainly from shallow sample depths. Instead, the novel design is based on a polyimide film (Kapton) onto which finely powdered titanium dioxide-based P binding agent (Metsorb) was applied, resulting in superficial P binding only. The BL was successfully used for quantitative visualization of P diffusion from three conventional P fertilizers applied to two soils. On a selection of samples, XFM analysis was confirmed by quantitative laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The XFM method detected significant differences in labile P concentrations and P diffusion zone radii with the P fertilizer incubation, which were explained by soil and fertilizer properties. This development paves the way for fast XFM analysis of P on large DGT BLs to investigate in situ diffusion of labile P from fertilizers and to visualize large-scale P cycling processes at high spatial resolution.


Asunto(s)
Fertilizantes , Fósforo , Fósforo/análisis , Fósforo/química , Fertilizantes/análisis , Rayos X , Suelo/química , Difusión , Microscopía Fluorescente
3.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327074

RESUMEN

The ornate spiny rock lobster, Panulirus ornatus, is an attractive candidate for aquaculture. The larval stages of spiny lobsters, known as phyllosoma, are complex with many developmental stages. Very little is known about the inorganic element composition of phyllosoma. In this study, a novel method using synchrotron X-ray fluorescence microscopy (XFM) was applied to investigate the distributions of metals potassium (K), calcium (Ca), copper (Cu), zinc (Zn), the metalloid arsenic (As), and nonmetal bromine (Br) within individual phyllosoma at stages 3, 4, and 8 of their development. For the first time, 1 µm resolution synchrotron XFM images of whole phyllosoma as well as closer examinations of their eyes, mouths, setae, and tails were obtained. Elements accumulated in certain locations within phyllosoma, providing insight into their likely biological role for these organisms. This information may be useful for the application of dietary supplementation in the future to closed larval cycle lobster aquaculture operations.


Asunto(s)
Palinuridae , Animales , Rayos X , Larva , Acuicultura , Microscopía Fluorescente
4.
Sci Rep ; 13(1): 10200, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353503

RESUMEN

The osteochondral interface is a thin layer that connects hyaline cartilage to subchondral bone. Subcellular elemental distribution can be visualised using synchrotron X-ray fluorescence microscopy (SR-XFM) (1 µm). This study aims to determine the relationship between elemental distribution and osteoarthritis (OA) progression based on disease severity. Using modified Mankin scores, we collected tibia plates from 9 knee OA patients who underwent knee replacement surgery and graded them as intact cartilage (non-OA) or degraded cartilage (OA). We used a tape-assisted system with a silicon nitride sandwich structure to collect fresh-frozen osteochondral sections, and changes in the osteochondral unit were defined using quantified SR-XFM elemental mapping at the Australian synchrotron's XFM beamline. Non-OA osteochondral samples were found to have significantly different zinc (Zn) and calcium (Ca) compositions than OA samples. The tidemark separating noncalcified and calcified cartilage was rich in zinc. Zn levels in OA samples were lower than in non-OA samples (P = 0.0072). In OA samples, the tidemark had less Ca than the calcified cartilage zone and subchondral bone plate (P < 0.0001). The Zn-strontium (Sr) colocalisation index was higher in OA samples than in non-OA samples. The lead, potassium, phosphate, sulphur, and chloride distributions were not significantly different (P > 0.05). In conclusion, SR-XFM analysis revealed spatial elemental distribution at the subcellular level during OA development.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Cartílago Articular/diagnóstico por imagen , Sincrotrones , Rayos X , Australia , Osteoartritis de la Rodilla/diagnóstico por imagen , Progresión de la Enfermedad , Zinc , Microscopía Fluorescente
5.
J Hazard Mater ; 454: 131490, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121042

RESUMEN

The growing amount of W mining waste produced globally is of concern for its proven hazard to the environment and to human health. While uncontrolled biooxidation can result in environmental harm, bioleaching, where pregnant leach solutions are controlled, has been widely used in the mining industry for valuable metals recovery, often from low-grade materials. This bioleaching study was developed to evaluate whether the biogeochemical reprocessing of W tailings could be employed for the decontamination of W-bearing mine waste, combined with valuable metals recovery, i.e., turning a waste into a resource. Using an in-vitro laboratory model, the susceptibility of wolframite [(Fe,Mn)WO4] to acid dissolution during the concomitant oxidation of co-localized sulfidic minerals represented the basic strategy for enhanced W recovery. Encouragingly, geochemistry and synchrotron-based X-ray absorption near edge structure of weathered W tailings demonstrated that early-stage wolframite dissolution occurred. However, W dissolution was limited by the formation of secondary W minerals; weathering produced two secondary W minerals i.e., gallium-rich tungstate and minor sanmartinite [(Zn,Fe)WO4]. The dissolution and re-precipitation of W minerals may provide a strategy for W waste reprocessing if the two processes can be separated by initially putting W into solution, and allowing for its extraction from tailings, followed by its' recovery by secondary W mineral formation.


Asunto(s)
Galio , Tungsteno , Humanos , Minerales , Minería , Bacterias
6.
J Hazard Mater ; 445: 130508, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36473257

RESUMEN

Wolframite [(Fe,Mn)WO4] tailings represent a hazardous waste that can pose a threat to the environment, humans, animals and plants. The present study aims to conduct a high-resolution depth profile characterization of wolframite tailings from Wolfram Camp, North Queensland, Australia, to understand the biogeochemical influences on W mobilization. Several indigenous Fe- and S-oxidizing bacteria (e.g., Streptococcus pneumoniae and Thiomonas delicata) in wolframite tailings were found highly associated with W, As, and rare earth elements. Biooxidation of metal sulfides, i.e., pyrite, molybdenite and bismuthinite, produced sulfuric acid, which accelerated the weathering of wolframite, mobilizing tungstate (WO42-). Using synchrotron-based X-ray fluorescence microscopy (XFM) and W L-edge X-ray absorption near-edge spectroscopy (µ-XANES) analysis, wolframite was initially transformed into Na- and Bi- tungstate as well as tungstic acid (partial weathering) followed by the formation of Ga- and Zn- tungstate after extensive weathering, i.e., the wolframite had disappeared. While W (VI) was the major W species in wolframite tailings, minor W(0) and W(II), and trace W(IV) were also detected. The major contaminant in the Wolfram Camp tailings was As. Though wolframite tailings are hazardous waste, the toxicity of W was unclear. Tungsten waste still has industrial value; apart from using them as substitution material for cement and glass production, there is interest in reprocessing W waste for valuable metal recovery. If the environmental benefits are taken into consideration, i.e., preventing the release of toxic metals into surrounding waterways, reprocessing may be economic.


Asunto(s)
Minerales , Tungsteno , Humanos , Minerales/química , Metales/química , Tiempo (Meteorología)
7.
Artículo en Inglés | MEDLINE | ID: mdl-33649114

RESUMEN

Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 µM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 µM, respectively. The corresponding intracellular concentrations following the treatment at 5 µM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.

8.
Metallomics ; 14(10)2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36066906

RESUMEN

Metal ions (Fe, Cu, and Zn) are essential to a healthy brain function, with the amount, localisation, and chemical form often tightly controlled. Evidence points towards loss of metal ion homeostasis within the ageing brain; in particular brain Fe accumulation appears to be a hallmark of ageing, which may place the brain at a greater risk of neurodegenerative disease. Unfortunately, the cause or consequence of altered brain metal ion homeostasis during ageing remains unknown, and there is a lack of data comparing brain metal ion homeostasis with other events of the ageing process (e.g. brain metabolism, brain inflammation). This study has utilised a multi-modal approach that incorporated: X-ray fluorescence microscopy for elemental mapping of metal ion homeostasis, Perl's Fe histochemistry, FTIR spectroscopic biochemical imaging of lactate and protein aggregates, and immuno-fluorescence analysis of markers of brain inflammation and Fe storage proteins (heavy-chain ferritin, light-chain ferritin, and mitochondrial ferritin). Interestingly, while age-related Fe accumulation was observed in corpus callosum white matter of murine (C56BL/6J) brain tissue (concomitant with elevated levels of markers of brain inflammation and altered metabolism), Fe content was not altered within the hippocampus (a decrease in total Zn within the mossy fibres was observed). Ultimately, the results of this study demonstrate an important association between elevated brain Fe and brain inflammation during natural ageing. This study also highlights that future research is required to image different chemical forms of Fe with respect to changes in brain metabolism and inflammation, as well as localising these changes to specific cell types.


Asunto(s)
Encefalitis , Enfermedades Neurodegenerativas , Envejecimiento , Animales , Biomarcadores/metabolismo , Encefalitis/metabolismo , Ferritinas/metabolismo , Hipocampo/metabolismo , Homeostasis , Hierro/metabolismo , Lactatos/análisis , Lactatos/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas
9.
Histochem Cell Biol ; 158(5): 463-469, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35809120

RESUMEN

The anatomy of the osteochondral junction is complex because several tissue components exist as a unit, including uncalcified cartilage (with superficial, middle, and deep layers), calcified cartilage, and subchondral bone. Furthermore, it is difficult to study because this region is made up of a variety of cell types and extracellular matrix compositions. Using X-ray fluorescence microscopy, we present a protocol for simultaneous elemental detection on fresh frozen samples. We transferred the osteochondral sample using a tape-assisted system and successfully tested it in synchrotron X-ray fluorescence. This protocol elucidates the distinct distribution of elements at the human knee's osteochondral junction, making it a useful tool for analyzing the co-distribution of various elements in both healthy and diseased states.


Asunto(s)
Cartílago Articular , Humanos , Cartílago Articular/metabolismo , Secciones por Congelación , Huesos
11.
Anal Chem ; 94(11): 4584-4593, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276040

RESUMEN

Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 µm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background" of downstream samples.


Asunto(s)
Poliuretanos , Sincrotrones , Difusión , Geles , Suelo/química
12.
Analyst ; 147(3): 387-397, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34989361

RESUMEN

In forensic science, knowledge and understanding of material transfer and persistence is inherent to the interpretation of trace evidence and can provide vital information on the activity level surrounding a crime. Detecting metal ions in fingermark residue has long been of interest in the field of forensic science, due to the possibility of linking trace metal ion profiles to prior activity with specific metal objects (e.g. gun or explosive handling). Unfortunately, the imaging capability to visualise trace metal ions at sufficient spatial resolution to determine their distribution within a fingermark (micron level) was not previously available. Here, we demonstrate for the first time transfer and persistence of metals in fingermarks, at micron spatial resolution, using synchrotron sourced X-ray fluorescence microscopy. Such information may form a critical baseline for future metal-based detection strategies. Fingermarks were taken before and after brief handling of a gun barrel, ammunition cartridge case and party sparkler to demonstrate the transfer of metals. The results reveal increased metal content after contact with these objects, and critically, a differential pattern of metal ion increase was observed after handling different objects. Persistence studies indicate that these metals are removed as easily as they are transferred, with a brief period of hand washing appearing to successfully remove metallic residue from subsequent fingermarks. Preliminary work using X-ray absorption near edge structure spectroscopic mapping highlighted the potential use of this technique to differentiate between different chemical forms of metals and metal ions in latent fingermarks. It is anticipated that these findings can now be used to assist future work for the advancement of trace metal detection tests and fingermark development procedures.


Asunto(s)
Dermatoglifia , Sustancias Explosivas , Ciencias Forenses , Metales , Microscopía
13.
J Hazard Mater ; 422: 126924, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34523468

RESUMEN

Selenium (Se) has been mobilised by leaching from coal and associated waste rock exposed by mining activities in Western Canada, with deleterious impact on aquatic wildlife. Waste rock characterisation indicates that up to 7% of the Se, as Se(IV), may be associated with organic matter, with ≈9%, as Se(0), associated with euhedral pyrite. Small 1-2 µm mineral particles with average Se concentration of 1.0 ± 0.4 wt% account for the remaining Se with the largest components likely to be associated with Fe oxide/hydroxide/carbonate as Se(0) and framboidal pyrite as Se(IV) and Se(0). No evidence was found for the presence of Se(-I), Se(-II) or Se(VI). In the first 8 weeks of leaching Se release was not correlated to the addition of aqueous silicate, added to aid pyrite passivation, but was reduced by approximately one third when the waste was treated with manure. This suggests the primary initial source of leached Se was not pyrite. Added organic C results in increased microbial numbers, particularly aerobic microbes, and promotes the formation of extensive coating of extracellular polymeric substances resulting in depletion of O2 at particle surfaces, reducing oxidation of Se(IV) and therefore reducing the leach rate of Se. Subsequent to 8 weeks of leaching the rates of release of Se from the treated wastes were similar regardless of treatment strategy but were reduced as compared to the untreated waste rock, suggestive of partial framboidal pyrite geochemical and microbial passivation. Se leaching was not correlated to S leaching, but the source(s) of the leached S was not known as approximately half of the S within the waste rock was non-sulfidic. These results indicate that utilisation of local organic carbon-containing wastes for coverage of coal waste rock may be a cost-effective strategy to reduce Se leaching to acceptable rates of release regardless of whether the Se is associated with framboidal pyrite or organics.


Asunto(s)
Selenio , Carbonatos , Carbón Mineral , Minería , Oxidación-Reducción , Selenio/análisis
14.
Food Res Int ; 147: 110528, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399506

RESUMEN

Lactobacillus spp. are known to accumulate large amounts of inorganic manganese, which protects against oxidative damage by scavenging free radicals. The ability of probiotic L. paracasei ATCC 55544 to maintain viability during long-term ambient storage may be enhanced by this microorganism's ability to accumulate manganese, which may act as a free radical scavenger. To investigate this hypothesis, X-ray fluorescence microscopy (XFM) was employed to determine the changes in the elemental composition of L. paracasei during growth in the MRS medium with or without added manganese. Moreover, manganese uptake by cells as a function of physiological growth state, early log vs. stationary phase was evaluated. The semiquantitative X-ray fluorescence microscopy results revealed that lower levels of manganese accumulation occurred during the early log phase of bacterial growth of L. paracasei cells (0.0064 µg/cm2) compared with the stationary phase cells (0.1355 µg/cm2). L. paracasei cells grown in manganese deficient MRS medium resulted in lower manganese uptake by cells (0.0027 µg/cm2). The L. paracasei cells were further embedded in milk powder matrix using a fluidized-bed drying technique and stored at a water activity (aw) of 0.33 at 25 °C for 15 days. The viability counts of L. paracasei cells grown in MRS medium harvested after 18 h growth and embedded in milk powder matrix retained viability of (9.19 ± 0.12 log CFU/g). No viable L. paracasei cells were observed in the case of embedded L. paracasei cells grown in manganese-deficient MRS medium harvested after 18 h growth or in the case of L. paracasei cells harvested after 4 h when grown in MRS medium. The lower level of manganese accumulation was found to be related to the loss of bacterial viability during storage.


Asunto(s)
Lacticaseibacillus paracasei , Probióticos , Manganeso , Viabilidad Microbiana , Microscopía Fluorescente , Sincrotrones , Rayos X
15.
J Hazard Mater ; 410: 124553, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33223312

RESUMEN

Knowledge of the behavior of technologically enhanced naturally occurring radioactive materials derived through the decay of U and its daughter products, and their subsequent fractionation, mobilization and retention, is essential to develop effective mitigation strategies and long-term radiological risk prediction. In the present study, multiple state-of-the-art, spatially resolved micro-analytical characterization techniques were combined to systematically track the liberation and migration of radionuclides (RN) from U-bearing phases in an Olympic Dam Cu flotation concentrate following sulfuric-acid-leach processing. The results highlighted the progressive dissolution of U-bearing minerals (mainly uraninite) leading to the release, disequilibrium and ultimately upgrade of daughter RN from the parent U. This occurred in conjunction with primary Cu-Fe-sulfide minerals undergoing coupled-dissolution reprecipitation to the porous secondary Cu-mineral, covellite. The budget of RN remaining in the leached concentrate was split between RN still hosted in the original U-bearing minerals, and RN that were mobilized and subsequently sorbed/precipitated onto porous covellite and auxiliary gangue mineral phases (e.g. barite). Further grinding of the flotation concentrate prior to sulfuric-acid-leach led to dissolution of U-bearing minerals previously encapsulated within Cu-Fe-sulfide minerals, resulting in increased release and disequilibrium of daughter RN, and causing further RN upgrade. The various processes that affect RN (mobility, sorption, precipitation) and sulfide minerals (coupled-dissolution reprecipitation and associated porosity generation) occur continuously within the hydrometallurgical circuit, and their interplay controls the rapid and highly localized enrichment of RN. The innovative combination of tools developed here reveal the heterogeneous distribution and fractionation of the RN in the ores following hydrometallurgical treatment at nm to cm-scales in exquisite detail. This approach provides an effective blueprint for understanding of the mobility and retention of U and its daughter products in complex anthropogenic and natural processes in the mining and energy industries.

16.
Environ Sci Technol ; 54(19): 12072-12080, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32910856

RESUMEN

Consumption of rice (Oryza sativa) is the major dietary source of cadmium (Cd) for populations with rice as the staple. Little is known about the distribution and chemical speciation of Cd in rice grain, which is critical in determining the bioavailability of Cd to humans. We used synchrotron-based techniques for analyses of the speciation and distribution of Cd in rice grain. The majority of the Cd in rice grain was present as Cd-thiolate complexes (66-92%), likely in the form of Cd bound with thiol-rich proteins. The remainder was present as Cd-carboxyl compounds and Cd-histidine. Elemental mapping showed two different patterns of Cd distribution, one with an even distribution throughout the entire grain and the other with a preferential distribution in the outer tissues (aleurone layer and outer starchy endosperm). The distribution pattern is important as it affects the removal of Cd during milling. On average, milling reduced grain Cd concentrations by 23.5% (median of 27.5%), although the range varied widely from a 64.7% decrease to a 22.2% increase, depending upon the concentration of Cd in the bran. We found that the variation in the distribution pattern of Cd in the rice grain was due to a temporal change in the supply of Cd from the soil porewater during grain filling. These results have important implications for Cd bioavailability in human diets.


Asunto(s)
Oryza , Contaminantes del Suelo , Disponibilidad Biológica , Cadmio/análisis , Grano Comestible/química , Humanos , Suelo , Contaminantes del Suelo/análisis
17.
J Synchrotron Radiat ; 27(Pt 5): 1447-1458, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876622

RESUMEN

The X-ray fluorescence microscopy (XFM) beamline is an in-vacuum undulator-based X-ray fluorescence (XRF) microprobe beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the 4-27 keV energy range, permitting K emission to Cd and L and M emission for all other heavier elements. With a practical low-energy detection cut-off of approximately 1.5 keV, low-Z detection is constrained to Si, with Al detectable under favourable circumstances. The beamline has two scanning stations: a Kirkpatrick-Baez mirror microprobe, which produces a focal spot of 2 µm × 2 µm FWHM, and a large-area scanning `milliprobe', which has the beam size defined by slits. Energy-dispersive detector systems include the Maia 384, Vortex-EM and Vortex-ME3 for XRF measurement, and the EIGER2 X 1 Mpixel array detector for scanning X-ray diffraction microscopy measurements. The beamline uses event-mode data acquisition that eliminates detector system time overheads, and motion control overheads are significantly reduced through the application of an efficient raster scanning algorithm. The minimal overheads, in conjunction with short dwell times per pixel, have allowed XFM to establish techniques such as full spectroscopic XANES fluorescence imaging, XRF tomography, fly scanning ptychography and high-definition XRF imaging over large areas. XFM provides diverse analysis capabilities in the fields of medicine, biology, geology, materials science and cultural heritage. This paper discusses the beamline status, scientific showcases and future upgrades.

18.
J Synchrotron Radiat ; 27(Pt 4): 1092-1093, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566021

RESUMEN

A correction is made to the paper by Jones et al. (2020). [J. Synchrotron Rad. (2020), 27, 207-211].

19.
J Synchrotron Radiat ; 27(Pt 1): 207-211, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868753

RESUMEN

Determining the oxidation state of Fe through parameterization of X-ray absorption near-edge structure (XANES) spectral features is highly dependent on accurate and repeatable energy calibration between spectra. Small errors in energy calibration can lead to vastly different interpretations. While simultaneous measurement of a reference foil is often undertaken on X-ray spectroscopy beamlines, other beamlines measure XANES spectra without a reference foil and therefore lack a method for correcting energy drift. Here a method is proposed that combines two measures of Fe oxidation state taken from different parts of the spectrum to iteratively correct for an unknown energy offset between spectra, showing successful iterative self-calibration not only during individual beam time but also across different beamlines.

20.
Metallomics ; 11(12): 2097-2110, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31681916

RESUMEN

With similar chemistry, Mn and Fe interact in their many essential roles in plants but the magnitude and mechanisms involved of these interactions are poorly understood. Leaves of soybean (a Mn-sensitive species) developed a mild chlorosis and small dark spots and distorted trifoliate leaves with 30 µM Mn and 0.6 µM Fe in nutrient solution (pH 5.6; 3 mM ionic strength). At 0.6 µM Fe, lower alternate leaves of sunflower (a Mn-tolerant species) were chlorotic at 30 µM Mn and had a pale chlorosis and necrosis at 400 µM Mn. A concentration of 30 and 300 µM Fe in solution alleviated these typical symptoms of Mn toxicity and decreased the concentration of Mn from >3000 to ca. 800 mg kg-1 dry mass (DM) in all leaf tissues. As expected, increased Fe supply increased Fe in leaves from <100 up to 1350 mg Fe kg-1 DM. In situ synchrotron-based X-ray fluorescence microscopy showed that increased Fe supply caused an overall decrease in Mn in the leaf tissue but had little effect on the pattern of its distribution. Similarly, X-ray absorption spectroscopy identified only slight effects of Fe supply on Mn speciation in leaf tissues. Thus, the results of this study indicate that increased Fe supply ameliorated Mn toxicity in soybean and sunflower largely through decreased Mn uptake and translocation to leaf tissues rather than through changes in Mn distribution or speciation within the leaves.


Asunto(s)
Glycine max/efectos de los fármacos , Helianthus/efectos de los fármacos , Hierro/farmacología , Manganeso/farmacología , Microscopía Fluorescente/métodos , Espectroscopía de Absorción de Rayos X/métodos , Clorofila/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Helianthus/metabolismo , Manganeso/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Glycine max/metabolismo , Sincrotrones , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...