Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(3): H705-H714, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241007

RESUMEN

Pentoxifylline is a nonselective phosphodiesterase inhibitor used for the treatment of peripheral artery disease. Pentoxifylline acts through cyclic adenosine monophosphate, thereby enhancing red blood cell deformability, causing vasodilation and decreasing inflammation, and potentially stimulating ventilation. We conducted a double-blind, placebo-controlled, crossover, counter-balanced study to test the hypothesis that pentoxifylline could lower blood viscosity, enhance cerebral blood flow, and decrease pulmonary artery pressure in lowlanders following 11-14 days at 3,800 m. Participants (6 males/10 females; age, 27 ± 4 yr old) received either a placebo or 400 mg of pentoxifylline orally the night before and again 2 h before testing. We assessed arterial blood gases, venous hemorheology (blood viscosity, red blood cell deformability, and aggregation), and inflammation (TNF-α) in room air (end-tidal oxygen partial pressure, ∼52 mmHg). Global cerebral blood flow (gCBF), ventilation, and pulmonary artery systolic pressure (PASP) were measured in room air and again after 8-10 min of isocapnic hypoxia (end-tidal oxygen partial pressure, 40 mmHg). Pentoxifylline did not alter arterial blood gases, TNF-α, or hemorheology compared with placebo. Pentoxifylline did not affect gCBF or ventilation during room air or isocapnic hypoxia compared with placebo. However, in females, PASP was reduced with pentoxifylline during room air (placebo, 19 ± 3; pentoxifylline, 16 ± 3 mmHg; P = 0.021) and isocapnic hypoxia (placebo, 22 ± 5; pentoxifylline, 20 ± 4 mmHg; P = 0.029), but not in males. Acute pentoxifylline administration in lowlanders at 3,800 m had no impact on arterial blood gases, hemorheology, inflammation, gCBF, or ventilation. Unexpectedly, however, pentoxifylline reduced PASP in female participants, indicating a potential effect of sex on the pulmonary vascular responses to pentoxifylline.NEW & NOTEWORTHY We conducted a double-blind, placebo-controlled study on the rheological, cardiorespiratory and cerebrovascular effects of acute pentoxifylline in healthy lowlanders after 11-14 days at 3,800 m. Although red blood cell deformability was reduced and blood viscosity increased compared with low altitude, acute pentoxifylline administration had no impact on arterial blood gases, hemorheology, inflammation, cerebral blood flow, or ventilation. Pentoxifylline decreased pulmonary artery systolic pressure in female, but not male, participants.


Asunto(s)
Pentoxifilina , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Hemorreología , Factor de Necrosis Tumoral alfa , Hipoxia , Oxígeno , Aclimatación/fisiología , Inflamación/complicaciones , Gases , Circulación Cerebrovascular , Altitud
2.
J Cereb Blood Flow Metab ; 43(9): 1519-1531, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37042194

RESUMEN

Cerebral hypoxic vasodilation is poorly understood in humans, which undermines the development of therapeutics to optimize cerebral oxygen delivery. Across four investigations (total n = 195) we investigated the role of nitric oxide (NO) and hemoglobin-based S-nitrosothiol (RSNO) and nitrite (NO2-) signaling in the regulation of cerebral hypoxic vasodilation. We conducted hemodilution (n = 10) and NO synthase inhibition experiments (n = 11) as well as hemoglobin oxygen desaturation protocols, wherein we measured cerebral blood flow (CBF), intra-arterial blood pressure, and in subsets of participants trans-cerebral release/uptake of RSNO and NO2-. Higher CBF during hypoxia was associated with greater trans-cerebral RSNO release but not NO2-, while NO synthase inhibition reduced cerebral hypoxic vasodilation. Hemodilution increased the magnitude of cerebral hypoxic vasodilation following acute hemodilution, while in 134 participants tested under normal conditions, hypoxic cerebral vasodilation was inversely correlated to arterial hemoglobin concentration. These studies were replicated in a sample of polycythemic high-altitude native Andeans suffering from excessive erythrocytosis (n = 40), where cerebral hypoxic vasodilation was inversely correlated to hemoglobin concentration, and improved with hemodilution (n = 6). Collectively, our data indicate that cerebral hypoxic vasodilation is partially NO-dependent, associated with trans-cerebral RSNO release, and place hemoglobin-based NO signaling as a central mechanism of cerebral hypoxic vasodilation in humans.


Asunto(s)
Óxido Nítrico , S-Nitrosotioles , Humanos , Óxido Nítrico/metabolismo , Vasodilatación/fisiología , Hipoxia , Hemoglobinas/metabolismo , Transducción de Señal/fisiología , Oxígeno/metabolismo
3.
High Alt Med Biol ; 24(1): 27-36, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36940101

RESUMEN

Vizcardo-Galindo, Gustavo A., Connor A. Howe, Ryan L. Hoiland, Howard H. Carter, Christopher K. Willie, Philip N. Ainslie, and Joshua C. Tremblay. Impact of oxygen supplementation on brachial artery hemodynamics and vascular function during ascent to 5,050 m. High Alt Med Biol. 24:27-36, 2023.-High-altitude trekking alters upper limb hemodynamics and reduces brachial artery vascular function in lowlanders. Whether these changes are reversible with the removal of hypoxia is unknown. We investigated the impact of 20 minutes of oxygen supplementation (O2) on brachial artery hemodynamics, reactive hyperemia (RH; microvascular function), and flow-mediated dilation (FMD; endothelial function). Participants (aged 21-42 years) were examined before and with O2 at 3,440 m (n = 7), 4,371 m (n = 7), and 5,050 m (n = 12) using Duplex ultrasound (days 4, 7, and 10 respectively). At 3,440 m, O2 decreased brachial artery diameter (-5% ± 5%; p = 0.04), baseline blood flow (-44% ± 15%; p < 0.001), oxygen delivery (-39 ± 16; p < 0.001), and peak RH (-8% ± 8%; p = 0.02), but not RH normalized for baseline blood flow. Elevated FMD (p = 0.04) with O2 at 3,440 m was attributed to the reduction in baseline diameter. At 5,050 m, a reduction in brachial artery blood flow (-17% ± 22%; p = 0.03), but not oxygen delivery, diameter, RH, or FMD occurred with O2. These findings suggest that during early trekking at high altitude, O2 causes vasoconstriction in the upper limb along the arterial tree (conduit and resistance arteries). With incremental high-altitude exposure, O2 reduces blood flow without compromising oxygen delivery, RH, or FMD, suggesting a differential impact on vascular function modulated by the duration and severity of high-altitude exposure.


Asunto(s)
Arteria Braquial , Oxígeno , Humanos , Arteria Braquial/fisiología , Hemodinámica , Extremidad Superior , Terapia por Inhalación de Oxígeno , Vasodilatación/fisiología , Endotelio Vascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología
4.
J Physiol ; 601(6): 1095-1120, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36633375

RESUMEN

High-altitude (HA) hypoxia may alter the structural-functional integrity of the neurovascular unit (NVU). Herein, we compared male lowlanders (n = 9) at sea level (SL) and after 14 days acclimatization to 4300 m (chronic HA) in Cerro de Pasco (CdP), Péru (HA), against sex-, age- and body mass index-matched healthy highlanders (n = 9) native to CdP (lifelong HA). Venous blood was assayed for serum proteins reflecting NVU integrity, in addition to free radicals and nitric oxide (NO). Regional cerebral blood flow (CBF) was examined in conjunction with cerebral substrate delivery, dynamic cerebral autoregulation (dCA), cerebrovascular reactivity to carbon dioxide (CVRCO2 ) and neurovascular coupling (NVC). Psychomotor tests were employed to examine cognitive function. Compared to lowlanders at SL, highlanders exhibited elevated basal plasma and red blood cell NO bioavailability, improved anterior and posterior dCA, elevated anterior CVRCO2 and preserved cerebral substrate delivery, NVC and cognition. In highlanders, S100B, neurofilament light-chain (NF-L) and T-tau were consistently lower and cognition comparable to lowlanders following chronic-HA. These findings highlight novel integrated adaptations towards regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia. KEY POINTS: High-altitude (HA) hypoxia has the potential to alter the structural-functional integrity of the neurovascular unit (NVU) in humans. For the first time, we examined to what extent chronic and lifelong hypoxia impacts multimodal biomarkers reflecting NVU structure and function in lowlanders and native Andean highlanders. Despite lowlanders presenting with a reduction in systemic oxidative-nitrosative stress and maintained cerebral bioenergetics and cerebrovascular function during chronic hypoxia, there was evidence for increased axonal injury and cognitive impairment. Compared to lowlanders at sea level, highlanders exhibited elevated vascular NO bioavailability, improved dynamic regulatory capacity and cerebrovascular reactivity, comparable cerebral substrate delivery and neurovascular coupling, and maintained cognition. Unlike lowlanders following chronic HA, highlanders presented with lower concentrations of S100B, neurofilament light chain and total tau. These findings highlight novel integrated adaptations towards the regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia.


Asunto(s)
Mal de Altura , Humanos , Masculino , Dióxido de Carbono , Altitud , Hipoxia , Aclimatación/fisiología , Oxidación-Reducción , Óxido Nítrico , Homeostasis
5.
J Cereb Blood Flow Metab ; 43(1): 99-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36131560

RESUMEN

This study investigated the influence of acute reductions in arterial O2 content (CaO2) via isovolumic haemodilution on global cerebral blood flow (gCBF) and cerebrovascular CO2 reactivity (CVR) in 11 healthy males (age; 28 ± 7 years: body mass index; 23 ± 2 kg/m2). Radial artery and internal jugular vein catheters provided measurement of blood pressure and gases, quantification of cerebral metabolism, cerebral CO2 washout, and trans-cerebral nitrite exchange (ozone based chemiluminescence). Prior to and following haemodilution, the partial pressure of arterial CO2 (PaCO2) was elevated with dynamic end-tidal forcing while gCBF was measured with duplex ultrasound. CVR was determined as the slope of the gCBF response and PaCO2. Replacement of ∼20% of blood volume with an equal volume of 5% human serum albumin (Alburex® 5%) reduced haemoglobin (13.8 ± 0.8 vs. 11.3 ± 0.6 g/dL; P < 0.001) and CaO2 (18.9 ± 1.0 vs 15.0 ± 0.8 mL/dL P < 0.001), elevated gCBF (+18 ± 11%; P = 0.002), preserved cerebral oxygen delivery (P = 0.49), and elevated CO2 washout (+11%; P = 0.01). The net cerebral uptake of nitrite (11.6 ± 14.0 nmol/min; P = 0.027) at baseline was abolished following haemodilution (-3.6 ± 17.9 nmol/min; P = 0.54), perhaps underpinning the conservation of CVR (61.7 ± 19.0 vs. 69.0 ± 19.2 mL/min/mmHg; P = 0.23). These findings demonstrate that the cerebrovascular responses to acute anaemia in healthy humans are sufficient to support the maintenance of CVR.


Asunto(s)
Dióxido de Carbono , Estado de Salud , Humanos
6.
J Appl Physiol (1985) ; 133(6): 1356-1367, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326471

RESUMEN

We assessed hypercapnic cerebrovascular reactivity (CVR) and endothelium-dependent function [cerebral shear-mediated dilation (cSMD)] in the internal carotid artery (ICA) with and without systemic α1-adrenoreceptor blockade via Prazosin. We hypothesized that CVR would be reduced, whereas cSMD would remain unchanged, after Prazosin administration when compared with placebo. In 15 healthy adults (3 female, 26 ± 4 years), we conducted ICA duplex ultrasound during CVR [target +10 mmHg partial pressure of end-tidal carbon dioxide ([Formula: see text]) above baseline, 5 min] and cSMD (+9 mmHg [Formula: see text] above baseline, 30 s) using dynamic end-tidal forcing with and without α1-adrenergic blockade (Prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind, and randomized design. The CVR in the ICA was not different between placebo and Prazosin (P = 0.578). During CVR, the reactivities of mean arterial pressure and cerebrovascular conductance to hypercapnia were also not different between conditions (P = 0.921 and P = 0.664, respectively). During Prazosin, cSMD was lower (1.1 ± 2.0% vs 3.8 ± 3.0%; P = 0.032); however, these data should be interpreted with caution due to the elevated baseline diameter (+1.3 ± 3.6%; condition: P = 0.0498) and lower shear rate (-14.5 ± 23.0%; condition: P < 0.001). Therefore, lower cSMD post α1-adrenoreceptor blockade might not indicate a reduction in cerebral endothelial function per se, but rather, that α1-adrenoreceptors contribute to resting cerebral vascular restraint at the level of the ICA.NEW & NOTEWORTHY We assessed steady-state hypercapnic cerebrovascular reactivity and cerebral endothelium-dependent function, with and without α1-adrenergic blockade (Prazosin), in a placebo-controlled, double-blind, and randomized study, to assess the contribution of α1-adrenergic receptors to cerebrovascular CO2 regulation. After administration of Prazosin, cerebrovascular reactivity to CO2 was not different compared with placebo despite lower blood flow, whereas cerebral endothelium-dependent function was reduced, likely due to elevated baseline internal carotid arterial diameter. These findings suggest that α1-adrenoreceptor activity does not influence cerebral blood flow regulation to CO2 and cerebral endothelial function.


Asunto(s)
Arteria Carótida Interna , Hipercapnia , Adulto , Femenino , Humanos , Adrenérgicos , Velocidad del Flujo Sanguíneo/fisiología , Dióxido de Carbono , Arteria Carótida Interna/fisiología , Circulación Cerebrovascular/fisiología , Prazosina/farmacología , Receptores Adrenérgicos alfa 1 , Masculino , Adulto Joven
7.
Exp Physiol ; 107(12): 1440-1453, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36114662

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the contributions of shear stress and adrenergic tone to brachial artery vasodilatation during hypercapnia? What is the main finding and its importance? In healthy young adults, shear-mediated vasodilatation does not occur in the brachial artery during hypercapnia, as elevated α1-adrenergic activity typically maintains vascular tone and offsets distal vasodilatation controlling flow. ABSTRACT: We aimed to assess the shear stress dependency of brachial artery (BA) responses to hypercapnia, and the α1-adrenergic restraint of these responses. We hypothesized that elevated shear stress during hypercapnia would cause BA vasodilatation, but where shear stress was prohibited (via arterial compression), the BA would not vasodilate (study 1); and, in the absence of α1-adrenergic activity, blood flow, shear stress and BA vasodilatation would increase (study 2). In study 1, 14 healthy adults (7/7 male/female, 27 ± 4 years) underwent bilateral BA duplex ultrasound during hypercapnia (partial pressure of end-tidal carbon dioxide, +10.2 ± 0.3 mmHg above baseline, 12 min) via dynamic end-tidal forcing, and shear stress was reduced in one BA using manual compression (compression vs. control arm). Neither diameter nor blood flow was different between baseline and the last minute of hypercapnia (P = 0.423, P = 0.363, respectively) in either arm. The change values from baseline to the last minute, in diameter (%; P = 0.201), flow (ml/min; P = 0.234) and conductance (ml/min/mmHg; P = 0.503) were not different between arms. In study 2, 12 healthy adults (9/3 male/female, 26 ± 4 years) underwent the same design with and without α1-adrenergic receptor blockade (prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind and randomized design. BA flow, conductance and shear rate increased during hypercapnia in the prazosin control arm (interaction, P < 0.001), but in neither arm during placebo. Even in the absence of α1-adrenergic restraint, downstream vasodilatation in the microvasculature during hypercapnia is insufficient to cause shear-mediated vasodilatation in the BA.


Asunto(s)
Arteria Braquial , Hipercapnia , Adulto Joven , Humanos , Femenino , Masculino , Arteria Braquial/fisiología , Adrenérgicos , Flujo Sanguíneo Regional/fisiología , Vasodilatación/fisiología , Prazosina , Velocidad del Flujo Sanguíneo/fisiología
8.
Cell Rep ; 40(7): 111213, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977481

RESUMEN

High altitude exposes humans to hypobaric hypoxia, which induces various physiological and molecular changes. Recent studies point toward interaction between circadian rhythms and the hypoxic response, yet their human relevance is lacking. Here, we examine the effect of different high altitudes in conjunction with time of day on human whole-blood transcriptome upon an expedition to the highest city in the world, La Rinconada, Peru, which is 5,100 m above sea level. We find that high altitude vastly affects the blood transcriptome and, unexpectedly, does not necessarily follow a monotonic response to altitude elevation. Importantly, we observe daily variance in gene expression, especially immune-related genes, which is largely altitude dependent. Moreover, using a digital cytometry approach, we estimate relative changes in abundance of different cell types and find that the response of several immune cell types is time- and altitude dependent. Taken together, our data provide evidence for interaction between the transcriptional response to hypoxia and the time of day in humans.


Asunto(s)
Hipoxia , Transcriptoma , Altitud , Humanos , Hipoxia/genética , Transcriptoma/genética
9.
High Alt Med Biol ; 23(2): 185-191, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35231184

RESUMEN

Steele, Andrew R., Philip N. Ainslie, Rachel Stone, Kaitlyn Tymko, Courtney Tymko, Connor A. Howe, David MacLeod, James D. Anholm, Christopher Gasho, and Michael M. Tymko. Global REACH 2018: characterizing acid-base balance over 21 days at 4,300 m in lowlanders. High Alt Med Biol. 23:185-191, 2022. Introduction: High altitude exposure results in hyperventilatory-induced respiratory alkalosis, followed by metabolic compensation to return arterial blood pH (pHa) toward sea level values. However, previous work has limited sample sizes, short-term exposure, and pharmacological confounders (e.g., acetazolamide). The purpose of this investigation was to characterize acid-base balance after rapid ascent to high altitude (i.e., 4,300 m) in lowlanders. We hypothesized that despite rapid bicarbonate ([HCO3-]) excretion during early acclimatization, partial respiratory alkalosis would still be apparent as reflected in elevations in pHa compared with sea level after 21 days of acclimatization to 4,300 m. Methods: In 16 (3 female) healthy volunteers not taking any medications, radial artery blood samples were collected and analyzed at sea level (150 m; Lima, Peru), and on days 1, 3, 7, 14, and 21 after rapid automobile (∼8 hours) ascent to high altitude (4,300 m; Cerro de Pasco, Peru). Results and Discussion: Although reductions in [HCO3-] occurred by day 3 (p < 0.01), they remained stable thereafter and were insufficient to fully normalize pHa back to sea level values over the subsequent 21 days (p < 0.01). These data indicate that only partial compensation for respiratory alkalosis persists throughout 21 days at 4,300 m.


Asunto(s)
Equilibrio Ácido-Base , Alcalosis Respiratoria , Aclimatación , Altitud , Bicarbonatos , Femenino , Humanos
10.
J Appl Physiol (1985) ; 132(2): 575-580, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35023761

RESUMEN

High-altitude exposure results in a hyperventilatory-induced respiratory alkalosis followed by renal compensation (bicarbonaturia) to return arterial blood pH (pHa) toward sea-level values. However, acid-base balance has not been comprehensively examined in both lowlanders and indigenous populations-where the latter are thought to be fully adapted to high altitude. The purpose of this investigation was to compare acid-base balance between acclimatizing lowlanders and Andean and Sherpa highlanders at various altitudes (∼3,800, ∼4,300, and ∼5,000 m). We compiled data collected across five independent high-altitude expeditions and report the following novel findings: 1) at 3,800 m, Andeans (n = 7) had elevated pHa compared with Sherpas (n = 12; P < 0.01), but not to lowlanders (n = 16; 9 days acclimatized; P = 0.09); 2) at 4,300 m, lowlanders (n = 16; 21 days acclimatized) had elevated pHa compared with Andeans (n = 32) and Sherpas (n = 11; both P < 0.01), and Andeans had elevated pHa compared with Sherpas (P = 0.01); and 3) at 5,000 m, lowlanders (n = 16; 14 days acclimatized) had higher pHa compared with both Andeans (n = 66) and Sherpas (n = 18; P < 0.01, and P = 0.03, respectively), and Andean and Sherpa highlanders had similar blood pHa (P = 0.65). These novel data characterize acid-base balance acclimatization and adaptation to various altitudes in lowlanders and indigenous highlanders.NEW & NOTEWORTHY Lowlander, Andean, and Sherpa arterial blood data were combined across five independent high-altitude expeditions in the United States, Nepal, and Peru to assess acid-base status at ∼3,800, ∼4,300, and ∼5,000 m. The main finding was that Andean and Sherpa highlander populations have more acidic arterial blood, due to elevated arterial carbon dioxide and similar arterial bicarbonate compared with acclimatizing lowlanders at altitudes ≥4,300 m.


Asunto(s)
Mal de Altura , Expediciones , Aclimatación , Equilibrio Ácido-Base , Altitud , Humanos
11.
Chest ; 161(4): 1022-1035, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34508740

RESUMEN

BACKGROUND: Increasing iron bioavailability attenuates hypoxic pulmonary vasoconstriction in both lowlanders and Sherpas at high altitude. In contrast, the pulmonary vasculature of Andean individuals with chronic mountain sickness (CMS) is resistant to iron administration. Although pulmonary vascular remodeling and hypertension are characteristic features of CMS, the effect of iron administration in healthy Andean individuals, to our knowledge, has not been investigated. If the interplay between iron status and pulmonary vascular tone in healthy Andean individuals remains intact, this could provide valuable clinical insight into the role of iron regulation at high altitude. RESEARCH QUESTION: Is the pulmonary vasculature in healthy Andean individuals responsive to iron infusion? STUDY DESIGN AND METHODS: In a double-blinded, block-randomized design, 24 healthy high-altitude Andean individuals and 22 partially acclimatized lowlanders at 4,300 m (Cerro de Pasco, Peru) received an IV infusion of either 200 mg of iron (III)-hydroxide sucrose or saline. Markers of iron status were collected at baseline and 4 h after infusion. Echocardiography was performed in participants during room air breathing (partial pressure of inspired oxygen [Pio2] of approximately 96 mm Hg) and during exaggerated hypoxia (Pio2 of approximately 73 mm Hg) at baseline and at 2 and 4 h after the infusion. RESULTS: Iron infusion reduced pulmonary artery systolic pressure (PASP) by approximately 2.5 mm Hg in room air (main effect, P < .001) and by approximately 7 mm Hg during exaggerated hypoxia (main effect, P < .001) in both lowlanders and healthy Andean highlanders. There was no change in PASP after the infusion of saline. Iron metrics were comparable between groups, except for serum ferritin, which was 1.8-fold higher at baseline in the Andean individuals than in the lowlanders (95% CI, 74-121 ng/mL vs 37-70 ng/mL, respectively; P = .003). INTERPRETATION: The pulmonary vasculature of healthy Andean individuals and lowlanders remains sensitive to iron infusion, and this response seems to differ from the pathologic characteristics of CMS.


Asunto(s)
Mal de Altura , Expediciones , Altitud , Humanos , Hipoxia , Hierro , Vasoconstricción
12.
J Physiol ; 600(6): 1385-1403, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34904229

RESUMEN

Cerebrovascular CO2 reactivity (CVR) is often considered a bioassay of cerebrovascular endothelial function. We recently introduced a test of cerebral shear-mediated dilatation (cSMD) that may better reflect endothelial function. We aimed to determine the nitric oxide (NO)-dependency of CVR and cSMD. Eleven volunteers underwent a steady-state CVR test and transient CO2 test of cSMD during intravenous infusion of the NO synthase inhibitor NG -monomethyl-l-arginine (l-NMMA) or volume-matched saline (placebo; single-blinded and counter-balanced). We measured cerebral blood flow (CBF; duplex ultrasound), intra-arterial blood pressure and PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ . Paired arterial and jugular venous blood sampling allowed for the determination of trans-cerebral NO2- exchange (ozone-based chemiluminescence). l-NMMA reduced arterial NO2- by ∼25% versus saline (74.3 ± 39.9 vs. 98.1 ± 34.2 nM; P = 0.03). The steady-state CVR (20.1 ± 11.6 nM/min at baseline vs. 3.2 ± 16.7 nM/min at +9 mmHg PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ ; P = 0.017) and transient cSMD tests (3.4 ± 5.9 nM/min at baseline vs. -1.8 ± 8.2 nM/min at 120 s post-CO2 ; P = 0.044) shifted trans-cerebral NO2- exchange towards a greater net release (a negative value indicates release). Although this trans-cerebral NO2- release was abolished by l-NMMA, CVR did not differ between the saline and l-NMMA trials (57.2 ± 14.6 vs. 54.1 ± 12.1 ml/min/mmHg; P = 0.49), nor did l-NMMA impact peak internal carotid artery dilatation during the steady-state CVR test (6.2 ± 4.5 vs. 6.2 ± 5.0% dilatation; P = 0.960). However, l-NMMA reduced cSMD by ∼37% compared to saline (2.91 ± 1.38 vs. 4.65 ± 2.50%; P = 0.009). Our findings indicate that NO is not an obligatory regulator of steady-state CVR. Further, our novel transient CO2 test of cSMD is largely NO-dependent and provides an in vivo bioassay of NO-mediated cerebrovascular function in humans. KEY POINTS: Emerging evidence indicates that a transient CO2 stimulus elicits shear-mediated dilatation of the internal carotid artery, termed cerebral shear-mediated dilatation. Whether or not cerebrovascular reactivity to a steady-state CO2 stimulus is NO-dependent remains unclear in humans. During both a steady-state cerebrovascular reactivity test and a transient CO2 test of cerebral shear-mediated dilatation, trans-cerebral nitrite exchange shifted towards a net release indicating cerebrovascular NO production; this response was not evident following intravenous infusion of the non-selective NO synthase inhibitor NG -monomethyl-l-arginine. NO synthase blockade did not alter cerebrovascular reactivity in the steady-state CO2 test; however, cerebral shear-mediated dilatation following a transient CO2 stimulus was reduced by ∼37% following intravenous infusion of NG -monomethyl-l-arginine. NO is not obligatory for cerebrovascular reactivity to CO2 , but is a key contributor to cerebral shear-mediated dilatation.


Asunto(s)
Dióxido de Carbono , Óxido Nítrico , Circulación Cerebrovascular/fisiología , Dilatación , Inhibidores Enzimáticos/farmacología , Humanos , Óxido Nítrico Sintasa , Dióxido de Nitrógeno , omega-N-Metilarginina/farmacología
13.
J Cereb Blood Flow Metab ; 42(4): 559-571, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34904461

RESUMEN

This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).


Asunto(s)
Desequilibrio Ácido-Base , Acidosis Respiratoria , Acidosis , Equilibrio Ácido-Base/fisiología , Bicarbonatos , Dióxido de Carbono , Humanos , Concentración de Iones de Hidrógeno
14.
Am J Physiol Heart Circ Physiol ; 321(4): H738-H747, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448634

RESUMEN

Hemoconcentration can influence hypoxic pulmonary vasoconstriction (HPV) via increased frictional force and vasoactive signaling from erythrocytes, but whether the balance of these mechanism is modified by the duration of hypoxia remains to be determined. We performed three sequential studies: 1) at sea level, in normoxia and isocapnic hypoxia with and without isovolumic hemodilution (n = 10, aged 29 ± 7 yr); 2) at altitude (6 ± 2 days acclimatization at 5,050 m), before and during hypervolumic hemodilution (n = 11, aged 27 ± 5 yr) with room air and additional hypoxia [fraction of inspired oxygen ([Formula: see text])= 0.15]; and 3) at altitude (4,340 m) in Andean high-altitude natives with excessive erythrocytosis (EE; n = 6, aged 39 ± 17 yr), before and during isovolumic hemodilution with room air and hyperoxia (end-tidal Po2 = 100 mmHg). At sea level, hemodilution mildly increased pulmonary artery systolic pressure (PASP; +1.6 ± 1.5 mmHg, P = 0.01) and pulmonary vascular resistance (PVR; +0.7 ± 0.8 wu, P = 0.04). In contrast, after acclimation to 5,050 m, hemodilution did not significantly alter PASP (22.7 ± 5.2 vs. 24.5 ± 5.2 mmHg, P = 0.14) or PVR (2.2 ± 0.9 vs. 2.3 ± 1.2 wu, P = 0.77), although both remained sensitive to additional acute hypoxia. In Andeans with EE at 4,340 m, hemodilution lowered PVR in room air (2.9 ± 0.9 vs. 2.3 ± 0.8 wu, P = 0.03), but PASP remained unchanged (31.3 ± 6.7 vs. 30.9 ± 6.9 mmHg, P = 0.80) due to an increase in cardiac output. Collectively, our series of studies reveal that HPV is modified by the duration of exposure and the prevailing hematocrit level. In application, these findings emphasize the importance of accounting for hematocrit and duration of exposure when interpreting the pulmonary vascular responses to hypoxemia.NEW & NOTEWORTHY Red blood cell concentration influences the pulmonary vasculature via direct frictional force and vasoactive signaling, but whether the magnitude of the response is modified with duration of exposure is not known. By assessing the pulmonary vascular response to hemodilution in acute normobaric and prolonged hypobaric hypoxia in lowlanders and lifelong hypobaric hypoxemia in Andean natives, we demonstrated that a reduction in red cell concentration augments the vasoconstrictive effects of hypoxia in lowlanders. In high-altitude natives, hemodilution lowered pulmonary vascular resistance, but a compensatory increase in cardiac output following hemodilution rendered PASP unchanged.


Asunto(s)
Aclimatación , Altitud , Presión Arterial , Eritrocitos/metabolismo , Hemodilución , Hipoxia/sangre , Policitemia/sangre , Arteria Pulmonar/fisiopatología , Vasoconstricción , Adulto , Viscosidad Sanguínea , Gasto Cardíaco , Frecuencia Cardíaca , Hematócrito , Humanos , Hipoxia/diagnóstico , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Policitemia/diagnóstico , Policitemia/fisiopatología , Factores de Tiempo , Resistencia Vascular , Adulto Joven
15.
J Physiol ; 599(15): 3663-3676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107079

RESUMEN

KEY POINTS: We investigated the influence of arterial PCO2 ( PaCO2 ) with and without acute experimental metabolic alkalosis on neurovascular coupling (NVC). We assessed stepwise iso-oxic alterations in PaCO2 prior to and following intravenous NaHCO3 to acutely elevate arterial pH and [HCO3- ]. The NVC response was not altered following NaHCO3 between stepwise PaCO2 stages; therefore, NVC is acutely mediated by PaCO2 rather than the prevailing arterial [H+ ]/pH. The NVC response was attenuated by 27-38% with -10 mmHg PaCO2 and the absolute peak change was reduced by -19% with +10 mmHg PaCO2 irrespective of acutely elevated arterial pH/[HCO3- ]. The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively) likely indicating an influence of resting cerebrovascular tone on NVC responsiveness. ABSTRACT: Elevations in cerebral metabolism necessitate appropriate coordinated and localized increases in cerebral blood flow (i.e. neurovascular coupling; NVC). Recent pre-clinical work indicates that arterial PCO2 ( PaCO2 ) mediates NVC independently of arterial/extracellular pH; this has yet to be experimentally tested in humans. The goal of this study was to investigate the hypotheses that: (1) the NVC response would be unaffected by acute experimentally elevated arterial pH; rather, PaCO2 would regulate any changes in NVC; and (2) stepwise respiratory alkalosis and acidosis would each progressively reduce the NVC response. Ten healthy males completed a standardized visual stimulus-evoked NVC test during matched stepwise iso-oxic alterations in PaCO2 (hypocapnia: -5, -10 mmHg; hypercapnia: +5, +10 mmHg) prior to and following intravenous NaHCO3 (8.4%, 50 mEq/50 ml) that elevated arterial pH (7.406 ± 0.019 vs. 7.457 ± 0.029; P < 0.001) and [HCO3- ] (26.2 ± 1.5 vs. 29.3 ± 0.9 mEq/l; P < 0.001). Although the NVC response was collectively attenuated by 27-38% with -10 mmHg PaCO2 (stage post hoc: all P < 0.05), this response was unaltered following NaHCO3 (all P > 0.05) irrespective of the higher pH (P = 0.002) at each matched stage of PaCO2 (P = 0.417). The absolute peak change was reduced by -19 ± 41% with +10 mmHg PaCO2 irrespective of acutely elevated arterial pH/[HCO3- ] (stage post hoc: P = 0.022). The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively; stage effect: P < 0.001). Overall, these findings indicate that temporal patterns in NVC are acutely regulated by PaCO2 rather than arterial pH per se in the setting of acute metabolic alkalosis in humans.


Asunto(s)
Dióxido de Carbono , Acoplamiento Neurovascular , Circulación Cerebrovascular , Humanos , Concentración de Iones de Hidrógeno , Hipocapnia , Cinética , Masculino
16.
Exp Physiol ; 106(4): 1120-1133, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33559974

RESUMEN

NEW FINDINGS: What is the central question of this study? How does deep breath-hold diving impact cardiopulmonary function, both acutely and over the subsequent 2.5 hours post-dive? What is the main finding and its importance? Breath-hold diving, to depths below residual volume, is associated with acute impairments in pulmonary gas exchange, which typically resolve within 2.5 hours. These data provide new insight into the behaviour of the lungs and pulmonary vasculature following deep diving. ABSTRACT: Breath-hold diving involves highly integrative and extreme physiological responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure. Over two diving training camps (Study 1 and 2), 25 breath-hold divers (recreational to world-champion) performed 66 dives to 57 ± 20 m (range: 18-117 m). Using the deepest dive from each diver, temporal changes in cardiopulmonary function were assessed using non-invasive pulmonary gas exchange (indexed via the O2 deficit), ultrasound B-line scores, lung compliance and pulmonary haemodynamics at baseline and following the dive. Hydrostatically induced lung compression was quantified in Study 2, using spirometry and lung volume measurement, enabling each dive to be categorized by its residual volume (RV)-equivalent depth. From both studies, pulmonary gas exchange inefficiency - defined as an increase in O2 deficit - was related to the depth of the dive (r2  = 0.345; P < 0.001), with dives associated with lung squeeze symptoms exhibiting the greatest deficits. In Study 1, although B-lines doubled from baseline (P = 0.027), cardiac output and pulmonary artery systolic pressure were unchanged post-dive. In Study 2, dives with lung compression to ≤RV had higher O2 deficits at 9 min, compared to dives that did not exceed RV (24 ± 25 vs. 5 ± 8 mmHg; P = 0.021). The physiological significance of a small increase in estimated lung compliance post-dive (via decreased and increased/unaltered airway resistance and reactance, respectively) remains equivocal. Following deep dives, the current study highlights an integrated link between hydrostatically induced lung compression and transient impairments in pulmonary gas exchange efficiency.


Asunto(s)
Contencion de la Respiración , Intercambio Gaseoso Pulmonar , Gasto Cardíaco , Volumen Residual , Espirometría
17.
J Physiol ; 599(5): 1439-1457, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33404065

RESUMEN

KEY POINTS: We investigated the influence of arterial PCO2 ( PaCO2 ) with and without acutely elevated arterial pH and bicarbonate ([HCO3- ]) on cerebral blood flow (CBF) regulation in the internal carotid artery and vertebral artery. We assessed stepwise iso-oxic alterations in PaCO2 (i.e. cerebrovascular CO2 reactivity) prior to and following i.v. sodium bicarbonate infusion (NaHCO3- ) to acutely elevate arterial pH and [HCO3- ]. Total CBF was unchanged irrespective of a higher arterial pH at each matched stage of PaCO2 , indicating that CBF is acutely regulated by PaCO2 rather than arterial pH. The cerebrovascular responses to changes in arterial H+ /pH were altered in keeping with the altered relationship between PaCO2 and H+ /pH following NaHCO3- infusion (i.e. changes in buffering capacity). Total CBF was ∼7% higher following NaHCO3- infusion during isocapnic breathing providing initial evidence for a direct vasodilatory influence of HCO3- independent of PaCO2 levels. ABSTRACT: Cerebral blood flow (CBF) regulation is dependent on the integrative relationship between arterial PCO2 ( PaCO2 ), pH and cerebrovascular tone; however, pre-clinical studies indicate that intrinsic sensitivity to pH, independent of changes in PaCO2 or intravascular bicarbonate ([HCO3- ]), principally influences cerebrovascular tone. Eleven healthy males completed a standardized cerebrovascular CO2 reactivity (CVR) test utilizing radial artery catheterization and Duplex ultrasound (CBF); consisting of matched stepwise iso-oxic alterations in PaCO2 (hypocapnia: -5, -10 mmHg; hypercapnia: +5, +10 mmHg) prior to and following i.v. sodium bicarbonate (NaHCO3- ; 8.4%, 50 mEq 50 mL-1 ) to elevate pH (7.408 ± 0.020 vs. 7.461 ± 0.030; P < 0.001) and [HCO3- ] (26.1 ± 1.4 vs. 29.3 ± 0.9 mEq L-1 ; P < 0.001). Absolute CBF was not different at each stage of CO2 reactivity (P = 0.629) following NaHCO3- , irrespective of a higher pH (P < 0.001) at each matched stage of PaCO2 (P = 0.927). Neither hypocapnic (3.44 ± 0.92 vs. 3.44 ± 1.05% per mmHg PaCO2 ; P = 0.499), nor hypercapnic (7.45 ± 1.85 vs. 6.37 ± 2.23% per mmHg PaCO2 ; P = 0.151) reactivity to PaCO2 were altered pre- to post-NaHCO3- . When indexed against arterial [H+ ], the relative hypocapnic CVR was higher (P = 0.019) and hypercapnic CVR was lower (P = 0.025) following NaHCO3- , respectively. These changes in reactivity to [H+ ] were, however, explained by alterations in buffering between PaCO2 and arterial H+ /pH consequent to NaHCO3- . Lastly, CBF was higher (688 ± 105 vs. 732 ± 89 mL min-1 , 7% ± 12%; P = 0.047) following NaHCO3- during isocapnic breathing providing support for a direct influence of HCO3- on cerebrovascular tone independent of PaCO2 . These data indicate that in the setting of acute metabolic alkalosis, CBF is regulated by PaCO2 rather than arterial pH.


Asunto(s)
Alcalosis , Dióxido de Carbono , Bicarbonatos , Circulación Cerebrovascular , Humanos , Concentración de Iones de Hidrógeno , Masculino
18.
Exp Physiol ; 106(1): 104-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271969

RESUMEN

NEW FINDINGS: What is the central question of this study? Does chronic mountain sickness (CMS) alter sympathetic neural control and arterial baroreflex regulation of blood pressure in Andean (Quechua) highlanders? What is the main finding and its importance? Compared to healthy Andean highlanders, basal sympathetic vasomotor outflow is lower, baroreflex control of muscle sympathetic nerve activity is similar, supine heart rate is lower and cardiovagal baroreflex gain is greater in mild CMS. Taken together, these findings reflect flexibility in integrative regulation of blood pressure that may be important when blood viscosity and blood volume are elevated in CMS. ABSTRACT: The high-altitude maladaptation syndrome chronic mountain sickness (CMS) is characterized by excessive erythrocytosis and frequently accompanied by accentuated arterial hypoxaemia. Whether altered autonomic cardiovascular regulation is apparent in CMS is unclear. Therefore, during the 2018 Global REACH expedition to Cerro de Pasco, Peru (4383 m), we assessed integrative control of blood pressure (BP) and determined basal sympathetic vasomotor outflow and arterial baroreflex function in eight Andean natives with CMS ([Hb] 22.6 ± 0.9 g·dL-1 ) and seven healthy highlanders ([Hb] 19.3 ± 0.8 g·dL-1 ). R-R interval (RRI, electrocardiogram), beat-by-beat BP (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest and during pharmacologically induced changes in BP (modified Oxford test). Although [Hb] and blood viscosity (7.8 ± 0.7 vs. 6.6 ± 0.7 cP; d = 1.7, P = 0.01) were elevated in CMS compared to healthy highlanders, cardiac output, total peripheral resistance and mean BP were similar between groups. The vascular sympathetic baroreflex MSNA set-point (i.e. MSNA burst incidence) and reflex gain (i.e. responsiveness) were also similar between groups (MSNA set-point, d = 0.75, P = 0.16; gain, d = 0.2, P = 0.69). In contrast, in CMS the cardiovagal baroreflex operated around a longer RRI (960 ± 159 vs. 817 ± 50 ms; d = 1.4, P = 0.04) with a greater reflex gain (17.2 ± 6.8 vs. 8.8 ± 2.6 ms·mmHg-1 ; d = 1.8, P = 0.01) versus healthy highlanders. Basal sympathetic vasomotor activity was also lower compared to healthy highlanders (33 ± 11 vs. 45 ± 13 bursts·min-1 ; d = 1.0, P = 0.08). In conclusion, our findings indicate adaptive differences in basal sympathetic vasomotor activity and heart rate compensate for the haemodynamic consequences of excessive erythrocyte volume and contribute to integrative blood pressure regulation in Andean highlanders with mild CMS.


Asunto(s)
Mal de Altura/fisiopatología , Presión Arterial/fisiología , Presión Sanguínea/fisiología , Volumen Sanguíneo/fisiología , Sistema Nervioso Simpático/fisiopatología , Adulto , Barorreflejo/fisiología , Enfermedad Crónica , Hemodinámica/fisiología , Humanos , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Fenómenos Fisiológicos Musculoesqueléticos , Adulto Joven
19.
Exp Physiol ; 106(1): 86-103, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32237245

RESUMEN

NEW FINDINGS: What is the central question of this study? Herein, a methodological overview of our research team's (Global REACH) latest high altitude research expedition to Peru is provided. What is the main finding and its importance? The experimental objectives, expedition organization, measurements and key cohort data are discussed. The select data presented in this manuscript demonstrate the haematological differences between lowlanders and Andeans with and without excessive erythrocytosis. The data also demonstrate that exercise capacity was similar between study groups at high altitude. The forthcoming findings from our research expedition will contribute to our understanding of lowlander and indigenous highlander high altitude adaptation. ABSTRACT: In 2016, the international research team Global Research Expedition on Altitude Related Chronic Health (Global REACH) was established and executed a high altitude research expedition to Nepal. The team consists of ∼45 students, principal investigators and physicians with the common objective of conducting experiments focused on high altitude adaptation in lowlanders and in highlanders with lifelong exposure to high altitude. In 2018, Global REACH travelled to Peru, where we performed a series of experiments in the Andean highlanders. The experimental objectives, organization and characteristics, and key cohort data from Global REACH's latest research expedition are outlined herein. Fifteen major studies are described that aimed to elucidate the physiological differences in high altitude acclimatization between lowlanders (n = 30) and Andean-born highlanders with (n = 22) and without (n = 45) excessive erythrocytosis. After baseline testing in Kelowna, BC, Canada (344 m), Global REACH travelled to Lima, Peru (∼80 m) and then ascended by automobile to Cerro de Pasco, Peru (∼4300 m), where experiments were conducted over 25 days. The core studies focused on elucidating the mechanism(s) governing cerebral and peripheral vascular function, cardiopulmonary regulation, exercise performance and autonomic control. Despite encountering serious logistical challenges, each of the proposed studies was completed at both sea level and high altitude, amounting to ∼780 study sessions and >3000 h of experimental testing. Participant demographics and data relating to acid-base balance and exercise capacity are presented. The collective findings will contribute to our understanding of how lowlanders and Andean highlanders have adapted under high altitude stress.


Asunto(s)
Adaptación Fisiológica/fisiología , Mal de Altura/fisiopatología , Corazón/fisiopatología , Hipoxia/fisiopatología , Adulto , Altitud , Enfermedad Crónica , Estudios de Cohortes , Expediciones , Humanos , Masculino , Perú
20.
J Physiol ; 598(23): 5333-5350, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32901919

RESUMEN

KEY POINTS: Brachial artery (BA) shear-mediated dilatation is a widely used assessment of vascular function with links to coronary artery health and cardiovascular risk. Cerebral vascular health is often interrogated using cerebrovascular (middle cerebral artery velocity) reactivity to carbon dioxide. We show that endothelium-dependent diameter (dilator) responses are not significantly related between the internal carotid artery (ICA) and BA; nor are endothelium-independent responses. Additionally, ICA endothelium-dependent responses are not related to middle cerebral artery velocity or ICA blood flow reactivity responses to carbon dioxide. Therefore, assessment of large extracranial cerebral artery vascular health should be quantified via methods specific to the vessel, not via peripheral endothelial function or cerebrovascular reactivity to carbon dioxide. ABSTRACT: This study compared internal carotid artery (ICA) and brachial artery (BA) endothelium-dependent and -independent vasodilation. We hypothesized that endothelium-dependent and -independent vasodilation of the ICA and BA would be neither similar in magnitude nor correlated between vessels. In 19 healthy adults (23 ± 6 years, 24 ± 3 kg/m2 , six female), endothelium-dependent dilatation in the ICA was determined via Duplex ultrasound during transiently elevated shear stress caused by increased partial pressure of end-tidal carbon dioxide using dynamic end-tidal forcing (+9 mmHg; cerebral flow-mediated dilatation, cFMD). BA endothelium-dependent dilatation was assessed via standard flow-mediated dilatation (FMD). Endothelium-independent dilatation in the ICA and BA was assessed concurrently for 10 min following administration of 400 µg sublingual glyceryl trinitrate (GTN). Endothelium-dependent vasodilation of the ICA (3.4 ± 2.4%) was lower than (P = 0.013) and not correlated to that of the BA (7.9 ± 3.3%; r2  = 0.00, P = 0.93). Including baseline diameter and shear-rate area under the curve as covariates maintained the difference between cFMD and FMD (3.3 ± 4.2% vs. 7.8 ± 3.8%, P = 0.03), while including baseline diameter and baseline shear rate-adjusted area under the curve as covariates abolished it (5.9 ± 3.7% vs. 5.9.8 ± 3.5%, P = 0.99). GTN-mediated vasodilation of the ICA (14.3 ± 2.9%) was lower than (P = 0.002) and not correlated to that of the BA (25.5 ± 8.8%; r2  = 0.12, P = 0.19). Adjusting for baseline diameter eliminated the differences in GTN-induced vasodilation (ICA: 20.1 ± 5.8% vs. BA: 20.4 ± 5.5%; P = 0.93). Differences in endothelium-dependent responses, and the lack of correlations between arteries, indicates that endothelium-dependent function cannot be assumed to be related across cerebral and peripheral vasculatures in young, healthy humans.


Asunto(s)
Arteria Braquial , Vasodilatadores , Adulto , Velocidad del Flujo Sanguíneo , Arteria Braquial/diagnóstico por imagen , Endotelio Vascular , Femenino , Humanos , Nitroglicerina/farmacología , Flujo Sanguíneo Regional , Vasodilatación , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...