Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Clin Microbiol ; 57(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30944194

RESUMEN

Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.


Asunto(s)
Portador Sano/veterinaria , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/aislamiento & purificación , Streptococcus suis/patogenicidad , Enfermedades de los Porcinos/microbiología , Animales , Portador Sano/microbiología , Inglaterra , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa Multiplex , Tonsila Palatina/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Porcinos , Virulencia/genética , Gales
3.
Gut ; 68(1): 49-61, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141958

RESUMEN

OBJECTIVE: Human intestinal epithelial organoids (IEOs) are increasingly being recognised as a highly promising translational research tool. However, our understanding of their epigenetic molecular characteristics and behaviour in culture remains limited. DESIGN: We performed genome-wide DNA methylation and transcriptomic profiling of human IEOs derived from paediatric/adult and fetal small and large bowel as well as matching purified human gut epithelium. Furthermore, organoids were subjected to in vitro differentiation and genome editing using CRISPR/Cas9 technology. RESULTS: We discovered stable epigenetic signatures which define regional differences in gut epithelial function, including induction of segment-specific genes during cellular differentiation. Established DNA methylation profiles were independent of cellular environment since organoids retained their regional DNA methylation over prolonged culture periods. In contrast to paediatric and adult organoids, fetal gut-derived organoids showed distinct dynamic changes of DNA methylation and gene expression in culture, indicative of an in vitro maturation. By applying CRISPR/Cas9 genome editing to fetal organoids, we demonstrate that this process is partly regulated by TET1, an enzyme involved in the DNA demethylation process. Lastly, generating IEOs from a child diagnosed with gastric heterotopia revealed persistent and distinct disease-associated DNA methylation differences, highlighting the use of organoids as disease-specific research models. CONCLUSIONS: Our study demonstrates striking similarities of epigenetic signatures in mucosa-derived IEOs with matching primary epithelium. Moreover, these results suggest that intestinal stem cell-intrinsic DNA methylation patterns establish and maintain regional gut specification and are involved in early epithelial development and disease.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Transcriptoma , Diferenciación Celular , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos
4.
Elife ; 62017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665271

RESUMEN

The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated.


Asunto(s)
Pulmón/citología , Organoides/crecimiento & desarrollo , Mucosa Respiratoria/citología , Células Madre/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Ratones
5.
J Clin Microbiol ; 55(9): 2617-2628, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28615466

RESUMEN

Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.


Asunto(s)
Infecciones por Haemophilus/diagnóstico , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidad , Técnicas de Diagnóstico Molecular/métodos , Enfermedades de los Porcinos/diagnóstico , Animales , Genoma/genética , Infecciones por Haemophilus/microbiología , Haemophilus parasuis/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex , Porcinos , Enfermedades de los Porcinos/microbiología , Virulencia/genética
6.
Front Microbiol ; 6: 1191, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26583006

RESUMEN

Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here, we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN, and cpn60) did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70), of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further, sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species.

7.
J Clin Microbiol ; 53(12): 3812-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26424843

RESUMEN

Haemophilus parasuis causes Glässer's disease and pneumonia in pigs. Indirect hemagglutination (IHA) is typically used to serotype this bacterium, distinguishing 15 serovars with some nontypeable isolates. The capsule loci of the 15 reference strains have been annotated, and significant genetic variation was identified between serovars, with the exception of serovars 5 and 12. A capsule locus and in silico serovar were identified for all but two nontypeable isolates in our collection of >200 isolates. Here, we describe the development of a multiplex PCR, based on variation within the capsule loci of the 15 serovars of H. parasuis, for rapid molecular serotyping. The multiplex PCR (mPCR) distinguished between all previously described serovars except 5 and 12, which were detected by the same pair of primers. The detection limit of the mPCR was 4.29 × 10(5) ng/µl bacterial genomic DNA, and high specificity was indicated by the absence of reactivity against closely related commensal Pasteurellaceae and other bacterial pathogens of pigs. A subset of 150 isolates from a previously sequenced H. parasuis collection was used to validate the mPCR with 100% accuracy compared to the in silico results. In addition, the two in silico-nontypeable isolates were typeable using the mPCR. A further 84 isolates were analyzed by mPCR and compared to the IHA serotyping results with 90% concordance (excluding those that were nontypeable by IHA). The mPCR was faster, more sensitive, and more specific than IHA, enabling the differentiation of 14 of the 15 serovars of H. parasuis.


Asunto(s)
Técnicas de Genotipaje/métodos , Haemophilus parasuis/clasificación , Haemophilus parasuis/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Serotipificación/métodos , Animales , Cápsulas Bacterianas/genética , Sitios Genéticos , Infecciones por Haemophilus/diagnóstico , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/aislamiento & purificación , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/microbiología , Factores de Tiempo
8.
Vet Res ; 46: 102, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26395877

RESUMEN

Haemophilus parasuis is a common inhabitant of the upper respiratory tract of pigs, and the causative agent of Glässer's disease. This disease is characterized by polyserositis and arthritis, produced by the severe inflammation caused by the systemic spread of the bacterium. After an initial colonization of the upper respiratory tract, H. parasuis enters the lung during the early stages of pig infection. In order to study gene expression at this location, we sequenced the ex vivo and in vivo H. parasuis Nagasaki transcriptome in the lung using a metatranscriptomic approach. Comparison of gene expression under these conditions with that found in conventional plate culture showed generally reduced expression of genes associated with anabolic and catabolic pathways, coupled with up-regulation of membrane-related genes involved in carbon acquisition, iron binding and pathogenesis. Some of the up-regulated membrane genes, including ABC transporters, virulence-associated autotransporters (vtaAs) and several hypothetical proteins, were only present in virulent H. parasuis strains, highlighting their significance as markers of disease potential. Finally, the analysis also revealed the presence of numerous antisense transcripts with possible roles in gene regulation. In summary, this data sheds some light on the scarcely studied in vivo transcriptome of H. parasuis, revealing nutritional virulence as an adaptive strategy for host survival, besides induction of classical virulence factors.


Asunto(s)
Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidad , Enfermedades Pulmonares/veterinaria , Enfermedades de los Porcinos/genética , Transcriptoma , Animales , Infecciones por Haemophilus/genética , Infecciones por Haemophilus/microbiología , Haemophilus parasuis/metabolismo , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/microbiología , Análisis de Secuencia de ADN/veterinaria , Porcinos , Enfermedades de los Porcinos/microbiología , Regulación hacia Arriba , Virulencia , Factores de Virulencia
10.
Nat Commun ; 6: 6740, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25824154

RESUMEN

Streptococcus suis causes disease in pigs worldwide and is increasingly implicated in zoonotic disease in East and South-East Asia. To understand the genetic basis of disease in S. suis, we study the genomes of 375 isolates with detailed clinical phenotypes from pigs and humans from the United Kingdom and Vietnam. Here, we show that isolates associated with disease contain substantially fewer genes than non-clinical isolates, but are more likely to encode virulence factors. Human disease isolates are limited to a single-virulent population, originating in the 1920, s when pig production was intensified, but no consistent genomic differences between pig and human isolates are observed. There is little geographical clustering of different S. suis subpopulations, and the bacterium undergoes high rates of recombination, implying that an increase in virulence anywhere in the world could have a global impact over a short timescale.


Asunto(s)
Infecciones Estreptocócicas/veterinaria , Streptococcus suis/genética , Enfermedades de los Porcinos/microbiología , Animales , Variación Genética , Genómica , Humanos , Infecciones Estreptocócicas/microbiología , Streptococcus suis/patogenicidad , Sus scrofa , Porcinos/microbiología , Reino Unido , Vietnam , Factores de Virulencia/genética
11.
BMC Genomics ; 15: 1179, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539682

RESUMEN

BACKGROUND: Haemophilus parasuis is the etiologic agent of Glässer's disease in pigs and causes devastating losses to the farming industry. Whilst some hyper-virulent isolates have been described, the relationship between genetics and disease outcome has been only partially established. In particular, there is weak correlation between serovar and disease phenotype. We sequenced the genomes of 212 isolates of H. parasuis and have used this to describe the pan-genome and to correlate this with clinical and carrier status, as well as with serotype. RESULTS: Recombination and population structure analyses identified five groups with very high rates of recombination, separated into two clades of H. parasuis with no signs of recombination between them. We used genome-wide association methods including discriminant analysis of principal components (DAPC) and generalised linear modelling (glm) to look for genetic determinants of this population partition, serovar and pathogenicity. We were able to identify genes from the accessory genome that were significantly associated with phenotypes such as potential serovar specific genes including capsule genes, and 48 putative virulence factors that were significantly different between the clinical and non-clinical isolates. We also show that the presence of many previously suggested virulence factors is not an appropriate marker of virulence. CONCLUSIONS: These genes will inform the generation of new molecular diagnostics and vaccines, and refinement of existing typing schemes and show the importance of the accessory genome of a diverse species when investigating the relationship between genotypes and phenotypes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Haemophilus parasuis/patogenicidad , Animales , Genoma Viral , Haemophilus parasuis/clasificación , Haemophilus parasuis/genética , Recombinación Genética , Porcinos/virología , Virulencia/genética
12.
Vet Res ; 45: 104, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25428823

RESUMEN

Haemophilus parasuis is a commensal bacterium of the upper respiratory tract of healthy pigs. It is also the etiological agent of Glässer's disease, a systemic disease characterized by polyarthritis, fibrinous polyserositis and meningitis, which causes high morbidity and mortality in piglets. The aim of this study was to evaluate biofilm formation by well-characterized virulent and non-virulent strains of H. parasuis. We observed that non-virulent strains isolated from the nasal cavities of healthy pigs formed significantly (p < 0.05) more biofilms than virulent strains isolated from lesions of pigs with Glässer's disease. These differences were observed when biofilms were formed in microtiter plates under static conditions or formed in the presence of shear force in a drip-flow apparatus or a microfluidic system. Confocal laser scanning microscopy using different fluorescent probes on a representative subset of strains indicated that the biofilm matrix contains poly-N-acetylglucosamine, proteins and eDNA. The biofilm matrix was highly sensitive to degradation by proteinase K. Comparison of transcriptional profiles of biofilm and planktonic cells of the non-virulent H. parasuis F9 strain revealed a significant number of up-regulated membrane-related genes in biofilms, and genes previously identified in Actinobacillus pleuropneumoniae biofilms. Our data indicate that non-virulent strains of H. parasuis have the ability to form robust biofilms in contrast to virulent, systemic strains. Biofilm formation might therefore allow the non-virulent strains to colonize and persist in the upper respiratory tract of pigs. Conversely, the planktonic state of the virulent strains might allow them to disseminate within the host.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/fisiología , Haemophilus parasuis/patogenicidad , Enfermedades de los Porcinos/microbiología , Tráquea/microbiología , Animales , Infecciones por Haemophilus/microbiología , Haemophilus parasuis/genética , Haemophilus parasuis/crecimiento & desarrollo , Microscopía Confocal/veterinaria , Datos de Secuencia Molecular , Análisis de Secuencia de ADN/veterinaria , Porcinos , Virulencia
13.
J Bacteriol ; 195(18): 4264-73, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23873912

RESUMEN

Haemophilus parasuis is the causative agent of Glässer's disease, a systemic disease of pigs, and is also associated with pneumonia. H. parasuis can be classified into 15 different serovars. Here we report, from the 15 serotyping reference strains, the DNA sequences of the loci containing genes for the biosynthesis of the group 1 capsular polysaccharides, which are potential virulence factors of this bacterium. We contend that these loci contain genes for polysaccharide capsule structures, and not a lipopolysaccharide O antigen, supported by the fact that they contain genes such as wza, wzb, and wzc, which are associated with the export of polysaccharide capsules in the current capsule classification system. A conserved region at the 3' end of the locus, containing the wza, ptp, wzs, and iscR genes, is consistent with the characteristic export region 1 of the model group 1 capsule locus. A potential serovar-specific region (region 2) has been found by comparing the predicted coding sequences (CDSs) in all 15 loci for synteny and homology. The region is unique to each reference strain with the exception of those in serovars 5 and 12, which are identical in terms of gene content. The identification and characterization of this locus among the 15 serovars is the first step in understanding the genetic, molecular, and structural bases of serovar specificity in this poorly studied but important pathogen and opens up the possibility of developing an improved molecular serotyping system, which would greatly assist diagnosis and control of Glässer's disease.


Asunto(s)
Proteínas Bacterianas/genética , Variación Genética , Haemophilus parasuis/clasificación , Haemophilus parasuis/genética , Polisacáridos Bacterianos/biosíntesis , Enfermedades de los Porcinos/microbiología , Animales , Proteínas Bacterianas/metabolismo , Técnicas de Tipificación Bacteriana , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Análisis de Secuencia de ADN , Serotipificación , Especificidad de la Especie , Sus scrofa , Porcinos , Virulencia , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...