Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 539, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725858

RESUMEN

Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Raíces de Plantas , Raíces de Plantas/metabolismo , Triticum/fisiología , Especies Reactivas de Oxígeno/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo
2.
Plant Genome ; 14(1): e20079, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33463018

RESUMEN

Good understanding of the genes controlling root development is required to engineer root systems better adapted to different soil types. In wheat (Triticum aestivum L.), the 1RS.1BL wheat-rye (Secale cereale L.) translocation has been associated with improved drought tolerance and a large root system. However, an isogenic line carrying an interstitial segment from wheat chromosome arm 1BS in the distal region of the 1RS arm (1RSRW ) showed reduced grain yield and shorter roots both in the field and in hydroponic cultures relative to isogenic lines with the complete 1RS arm. In this study, we used exome capture to characterize 1RSRW and its parental lines T-9 and 1B+40. We show that 1RSRW has a 7.0 Mb duplicated 1RS region and a 4.8 Mb 1BS insertion colinear with the 1RS duplication, resulting in triplicated genes. Lines homozygous for 1RSRW have short seminal roots, while lines heterozygous for this chromosome have roots of intermediate length. By contrast, near-isogenic lines carrying only the 1BS distal region or the 1RS-1BS duplication have long seminal roots similar to 1RS, suggesting a limited effect of the 1BS genes. These results suggest that the dosage of duplicated 1RS genes is critical for seminal root length. An induced deletion encompassing 38 orthologous wheat and rye duplicated genes restored root length and confirmed the importance of gene dosage in the short-root phenotype. We explored the expression profiles and functional annotation of these genes and discuss their potential as candidate genes for the regulation of seminal root length in wheat.


Asunto(s)
Secale , Triticum , Cromosomas de las Plantas , Dosificación de Gen , Secale/genética , Translocación Genética , Triticum/genética
3.
J Exp Bot ; 70(15): 4027-4037, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30976805

RESUMEN

The introgression of a small segment of wheat (Triticum aestivum L.) chromosome arm 1BS in the distal region of the rye (Secale cereale L.) 1RS.1BL arm translocation in wheat (henceforth 1RSRW) was previously associated with reduced grain yield, carbon isotope discrimination, and stomatal conductance, suggesting reduced access to soil moisture. Here we show that lines with the normal 1RS arm have longer roots than lines with the 1RSRW arm in both field and hydroponic experiments. In the 1RSRW lines, differences in seminal root length were associated with a developmentally regulated arrest of the root apical meristem (RAM). Approximately 10 d after germination, the seminal roots of the 1RSRW plants showed a gradual reduction in elongation rate, and stopped growing a week later. Seventeen days after germination, the roots of the 1RSRW plants showed altered gradients of reactive oxygen species and emergence of lateral roots close to the RAM, suggesting changes in the root meristem. The 1RSRW lines also showed reduced biomass (estimated by the normalized difference vegetation index) and grain yield relative to the 1RS lines, with larger differences under reduced or excessive irrigation than under normal irrigation. These results suggest that this genetic variation could be useful to modulate root architecture.


Asunto(s)
Polimorfismo Genético/genética , Secale/anatomía & histología , Triticum/anatomía & histología , Triticum/genética , Riego Agrícola , Cromosomas de las Plantas/genética , Meristema/anatomía & histología , Meristema/enzimología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Secale/genética , Translocación Genética/genética
4.
Theor Appl Genet ; 131(8): 1741-1759, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29767279

RESUMEN

KEY MESSAGE: Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation. Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (< 1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Triticum/crecimiento & desarrollo , Triticum/genética , Agua , Grano Comestible/genética , Estudios de Asociación Genética , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Estaciones del Año
5.
Mol Genet Genomics ; 293(2): 463-477, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29188438

RESUMEN

Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.


Asunto(s)
Mapeo Cromosómico/métodos , Secuenciación del Exoma/métodos , Mutación , Triticum/genética , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Genética de Población/métodos , Genoma de Planta/genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Triticum/crecimiento & desarrollo
6.
Proc Natl Acad Sci U S A ; 114(6): E913-E921, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28096351

RESUMEN

Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.


Asunto(s)
Genoma de Planta/genética , Mutación , Poliploidía , Triticum/genética , Análisis Mutacional de ADN/métodos , Evolución Molecular , Exoma/genética , Fitomejoramiento , Proteínas de Plantas/genética , Selección Genética
7.
Plant Physiol ; 172(1): 38-61, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27436831

RESUMEN

Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included.


Asunto(s)
Marcadores Genéticos/genética , Genoma de Planta/genética , Mutación INDEL , Polimorfismo de Nucleótido Simple , Alelos , Arabidopsis/genética , Secuencia de Bases , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Biología Computacional/métodos , Genotipo , Solanum lycopersicum/genética , Solanum/genética , Especificidad de la Especie
8.
Theor Appl Genet ; 127(12): 2695-709, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25322723

RESUMEN

KEY MESSAGE: This study identifies a small distal region of the 1RS chromosome from rye that has a positive impact on wheat yield. The translocation of the short arm of rye (Secale cereale L.) chromosome one (1RS) onto wheat (Triticum aestivum L.) chromosome 1B (1RS.1BL) is used in wheat breeding programs worldwide due to its positive effect on yield, particularly under abiotic stress. Unfortunately, this translocation is associated with poor bread-making quality. To mitigate this problem, the 1RS arm was engineered by the removal and replacement of two interstitial rye segments with wheat chromatin: a distal segment to introduce the Glu-B3/Gli-B1 loci from wheat, and a proximal segment to remove the rye Sec-1 locus. We used this engineered 1RS chromosome (henceforth 1RS(WW)) to develop and evaluate two sets of 1RS/1RS(WW) near isogenic lines (NILs). Field trials showed that standard 1RS lines had significantly higher yield and better canopy water status than the 1RS(WW) NILs in both well-watered and water-stressed environments. We intercrossed the 1RS and 1RS(WW) lines and generated two additional NILs, one carrying the distal (1RS(RW)) and the other carrying the proximal (1RS(WR)) wheat segment. Lines not carrying the distal wheat region (1RS and 1RS(WR)) showed significant improvements in grain yield and canopy water status compared to NILs carrying the distal wheat segment (1RS(WW) and 1RS(RW)), indicating that the 1RS region replaced by the distal wheat segment carries the beneficial allele(s). NILs without the distal wheat segment also showed higher carbon isotope discrimination and increased stomatal conductance, suggesting that these plants had improved access to water. The 1RS(WW), 1RS(WR) and 1RS(RW) NILs have been deposited in the National Small Grains Collection.


Asunto(s)
Mapeo Cromosómico , Semillas/crecimiento & desarrollo , Translocación Genética , Triticum/genética , Alelos , Cruzamiento , Isótopos de Carbono/análisis , Cromosomas de las Plantas , Ingeniería Genética , Genotipo , Fotosíntesis/genética , Transpiración de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Secale/genética , Triticum/fisiología , Agua/fisiología
9.
Plant Physiol ; 156(3): 1257-68, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21531898

RESUMEN

Discovery of rare mutations in populations requires methods, such as TILLING (for Targeting Induced Local Lesions in Genomes), for processing and analyzing many individuals in parallel. Previous TILLING protocols employed enzymatic or physical discrimination of heteroduplexed from homoduplexed target DNA. Using mutant populations of rice (Oryza sativa) and wheat (Triticum durum), we developed a method based on Illumina sequencing of target genes amplified from multidimensionally pooled templates representing 768 individuals per experiment. Parallel processing of sequencing libraries was aided by unique tracer sequences and barcodes allowing flexibility in the number and pooling arrangement of targeted genes, species, and pooling scheme. Sequencing reads were processed and aligned to the reference to identify possible single-nucleotide changes, which were then evaluated for frequency, sequencing quality, intersection pattern in pools, and statistical relevance to produce a Bayesian score with an associated confidence threshold. Discovery was robust both in rice and wheat using either bidimensional or tridimensional pooling schemes. The method compared favorably with other molecular and computational approaches, providing high sensitivity and specificity.


Asunto(s)
Genoma de Planta/genética , Mutagénesis/genética , Mutación/genética , Oryza/genética , Análisis de Secuencia de ADN/métodos , Triticum/genética , Genes de Plantas/genética , Genética de Población , Proyectos Piloto , Probabilidad , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...