Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invertebr Pathol ; 204: 108110, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631558

RESUMEN

Disease is a major threat to the economic, ecological and cultural services provided by wild bivalve populations. Over the past decade anecdotal reports on declining health of native bivalve populations around Aotearoa New Zealand have been supported by increasing observations of mass die-offs. Causes of declining health and mass die-offs of wild bivalves are not clear and could be due to a number of interactive and cumulative factors, including declining water quality, climate change, or disease. Pipi/kokota (Paphies australis) within the Whangarei area (northern New Zealand) have suffered repeated die-offs and declining health since at least 2009. Baseline health data for wild native bivalve populations are scarce making it difficult to identify changes in pathogen infection prevalence and intensity and infer their importance to host health. This research aimed to examine and document the health of pipi in Whangarei with the objective of identifying factors that may contribute to their ill health and lack of population recovery. We sampled pipi from four sites within Whangarei, eight times across two years (total n = 640) to establish a health baseline using histopathology, general bacteriology, and qPCR for the intracellular bacteria Endozoicomonas spp. Three pipi mass die-offs occurred during the sampling window that were opportunistically sampled to compare against the health baseline established using healthy pipi. An increase in bacterial growth and a decrease in the abundance of Endozoicomonas spp. in mortality pipi was observed compared with the health baseline. Establishing a health baseline for pipi from Whangarei provided a benchmark to assess changes in a pipi population experiencing high mortality. Such data can help identify factors contributing to die-offs and to help inform what mitigation, if any, is possible in wild shellfish populations.


Asunto(s)
Bivalvos , Animales , Nueva Zelanda , Bivalvos/microbiología , Bivalvos/parasitología
2.
J Microbiol Methods ; 202: 106581, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36181970

RESUMEN

Two sampling approaches for the growth of common or dominant bacteria from bivalve haemolymph were compared: (1) samples processed in the field immediately after collection (field samples), and (2) samples processed in the laboratory at least 24 h after collection (laboratory samples). The sampling approaches were compared on 210 marine bivalve molluscs Paphies subtriangulata and P. australis from two shallow intertidal sites in North Island New Zealand. The approaches were evaluated for the amount of bacterial growth, type of growth, and diversity of growth. Differences in amount and type of growth between the two sampling approaches were observed. Samples processed in the field from P. subtriangulata had significantly more bacterial growth, and a higher diversity of bacteria, including more common or dominant bacterial species. Laboratory samples had a higher proportion of samples with no growth, however common or dominant bacteria were still isolated from these samples. For P. australis, field samples more often had no bacterial growth and laboratory samples had a significantly higher number of common or dominant growth present. Field samples did however contain a higher diversity of bacteria. By conducting bacteriology on bivalves in either the field or the laboratory only, there may be limitations to determining the significance of a bacterial agent isolated. Sampling of both field and laboratory samples should be carried out where possible to optimise detection of important bacteria.


Asunto(s)
Bacteriología , Bivalvos , Animales , Bivalvos/microbiología , Hemolinfa , Bacterias , Nueva Zelanda
3.
Dis Aquat Organ ; 146: 91-105, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34617515

RESUMEN

The toheroa Paphies ventricosa is a large Aotearoa New Zealand (ANZ) endemic surf clam of cultural importance to many Maori, the Indigenous people of ANZ. Extensive commercial and recreational harvesting in the 20th century dramatically reduced populations, leading to the collapse and closure of the fishery. Despite being protected for >40 yr, toheroa have inexplicably failed to recover. In 2017, intracellular microcolonies (IMCs) of bacteria were detected in 'sick' toheroa in northern ANZ. Numerous mass mortality events (MMEs) have recently been recorded in ANZ shellfish, with many events linked by the presence of IMCs resembling Rickettsia-like organisms (RLOs). While similar IMCs have been implicated in MMEs in surf clams elsewhere, the impact of these IMCs on the health or recovery of toheroa is unknown. A critical first step towards understanding the significance of a pathogen in a host population is pathogen identification and characterisation. To begin this process, we examined 16S rRNA gene sequences of the putative IMCs from 4 toheroa populations that showed 97% homology to Endozoicomonas spp. sequences held in GenBank. Phylogenetic analysis identified closely related Endozoicomonas strains from the North and South Island, ANZ, and in situ hybridization, using 16S rRNA gene probes, confirmed the presence of the sequenced IMC gene in the gill and digestive gland tissues of toheroa. Quantitative PCR revealed site-specific and seasonal abundance patterns of Endozoicomonas spp. in toheroa populations. Although implicated in disease outbreaks elsewhere, the role of Endozoicomonas spp. within the ANZ shellfish mortality landscape remains uncertain.


Asunto(s)
Bivalvos , Rickettsia , Animales , Nueva Zelanda , Filogenia , ARN Ribosómico 16S/genética
4.
Dis Aquat Organ ; 143: 27-37, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33506813

RESUMEN

Kaimoana (shellfish, seafood) is an important food source and a significant social and cultural component of many New Zealand communities, especially the indigenous Maori. Over the past decade a decline has been detected in shellfish health and an increase in mortality events around New Zealand. Intracellular bacteria termed Rickettsia-like organisms (RLOs) have been observed in New Zealand bivalve molluscs during shellfish mortality events. Affected bivalves include cockles Austrovenus stutchburyi, ringed dosinia Dosinia anus, green-lipped mussels Perna canaliculus, pipi Paphies australis, toheroa Paphies ventricosa, tuatua Paphies subtriangulata, deepwater tuatua Paphies donacina and scallops Pecten novaezelandiae. RLOs are an informal morphology-based classification of intracellular bacteria, with the exact identification often unknown. Using shellfish collected during mortality events from 2014 to 2019 and apparently healthy samples collected in 2018 and 2019, we aimed to identify RLOs in New Zealand shellfish. Bacterial 16S rRNA gene sequences from RLO-infected shellfish showed >95% identity to published Endozoicomonas species. In situ hybridization confirmed the presence of the sequenced gene in the gill epithelium and digestive epithelium of all study species. A genus-specific quantitative PCR, targeting the 16S rRNA gene was developed to detect Endozoicomonas spp. in shellfish tissue. Prevalence of Endozoicomonas spp. in samples from mortality events and healthy shellfish analysed by quantitative PCR was high. Samples collected from mortality events, however, had a significantly higher load of Endozoicomonas spp. than the healthy samples. These results give us a greater understanding of these intracellular bacteria and their presence in populations of New Zealand shellfish.


Asunto(s)
Bivalvos , Pecten , Animales , Bacterias , Nueva Zelanda , ARN Ribosómico 16S , Mariscos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...