Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 901: 165933, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37536603

RESUMEN

An essential prerequisite to safeguard pollinator species is characterisation of the multifaceted diversity of crop pollinators and identification of the drivers of pollinator community changes across biogeographical gradients. The extent to which intensive agriculture is associated with the homogenisation of biological communities at large spatial scales remains poorly understood. In this study, we investigated diversity drivers for 644 bee species/morphospecies in 177 commercial apple orchards across 33 countries and four global biogeographical biomes. Our findings reveal significant taxonomic dissimilarity among biogeographical zones. Interestingly, despite this dissimilarity, species from different zones share similar higher-level phylogenetic groups and similar ecological and behavioural traits (i.e. functional traits), likely due to habitat filtering caused by perennial monoculture systems managed intensively for crop production. Honey bee species dominated orchard communities, while other managed/manageable and wild species were collected in lower numbers. Moreover, the presence of herbaceous, uncultivated open areas and organic management practices were associated with increased wild bee diversity. Overall, our study sheds light on the importance of large-scale analyses contributing to the emerging fields of functional and phylogenetic diversity, which can be related to ecosystem function to promote biodiversity as a key asset in agroecosystems in the face of global change pressures.

2.
Annu Rev Entomol ; 65: 391-407, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31610136

RESUMEN

Insects other than bees (i.e., non-bees) have been acknowledged as important crop pollinators, but our understanding of which crop plants they visit and how effective they are as crop pollinators is limited. To compare visitation and efficiency of crop-pollinating bees and non-bees at a global scale, we review the literature published from 1950 to 2018 concerning the visitors and pollinators of 105 global food crops that are known to benefit from animal pollinators. Of the 105 animal-pollinated crops, a significant proportion are visited by both bee and non-bee taxa (n = 82; 77%), with a total gross domestic product (GDP) value of US$780.8 billion. For crops with a narrower range of visitors, those that favor non-bees (n = 8) have a value of US$1.2 billion, compared to those that favor bees (n = 15), with a value of US$19.0 billion. Limited pollinator efficiency data were available for one or more taxa in only half of the crops (n = 61; 58%). Among the non-bees, some families were recorded visiting a wide range of crops (>12), including six families of flies (Syrphidae, Calliphoridae, Muscidae, Sarcophagidae, Tachinidae, and Bombyliidae), two beetle families (Coccinelidae and Nitidulidae), ants (Formicidae), wasps (Vespidae), and four families of moths and butterflies (Hesperiidae, Lycaenidae, Nymphalidae, and Pieridae). Among the non-bees, taxa within the dipteran families Syrphidae and Calliphoridae were the most common visitors to the most crops, but this may be an artifact of the limited data available. The diversity of species and life histories in these groups of lesser-known pollinators indicates that diet, larval requirements, and other reproductive needs will require alternative habitat management practices to bees.


Asunto(s)
Productos Agrícolas , Insectos , Polinización , Animales
3.
J Insect Sci ; 11: 98, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22208869

RESUMEN

Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width < 3 mm) in particular are rarely assessed. A survey of eight flowering commercial A. cepa seed fields in the North and South Islands of New Zealand using window traps revealed that small arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found.


Asunto(s)
Allium , Artrópodos , Biodiversidad , Polinización , Animales , Productos Agrícolas , Flores , Nueva Zelanda , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...