Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Semin Arthritis Rheum ; 60: 152185, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870237

RESUMEN

BACKGROUND: Alterations in gastrointestinal (GI) microbial composition have been reported in patients with systemic sclerosis (SSc). However, it is unclear to what degree these alterations and/or dietary changes contribute to the SSc-GI phenotype. OBJECTIVES: Our study aimed to 1) evaluate the relationship between GI microbial composition and SSc-GI symptoms, and 2) compare GI symptoms and GI microbial composition between SSc patients adhering to a low versus non-low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) diet. METHODS: Adult SSc patients were consecutively recruited to provide stool specimens for bacterial 16S rRNA gene sequencing. Patients completed the UCLA Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument (GIT 2.0) and the Diet History Questionnaire (DHQ) II and were classified as adhering to a low or non-low FODMAP diet. GI microbial differences were assessed using three metrics of alpha diversity (species richness, evenness, and phylogenetic diversity), as well as beta diversity (overall microbial composition). Differential abundance analysis was performed to identify specific genera associated with SSc-GI phenotype and low versus non-low FODMAP diet. RESULTS: Of the 66 total SSc patients included, the majority were women (n = 56) with a mean disease duration of 9.6 years. Thirty-five participants completed the DHQ II. Increased severity of GI symptoms (total GIT 2.0 score) was associated with decreased species diversity and differences in GI microbial composition. Specifically, pathobiont genera (e.g., Klebsiella and Enterococcus) were significantly more abundant in patients with increased GI symptom severity. When comparing low (N = 19) versus non-low (N = 16) FODMAP groups, there were no significant differences in GI symptom severity or in alpha and beta diversity. Compared with the low FODMAP group, the non-low FODMAP group had greater abundance of the pathobiont Enterococcus. CONCLUSION: SSc patients reporting more severe GI symptoms exhibited GI microbial dysbiosis characterized by less species diversity and alterations in microbial composition. A low FODMAP diet was not associated with significant alterations in GI microbial composition or reduced SSc-GI symptoms; however, randomized controlled trials are needed to evaluate the impact of specific diets on GI symptoms in SSc.


Asunto(s)
Enfermedades Gastrointestinales , Microbiota , Esclerodermia Sistémica , Humanos , Masculino , Femenino , ARN Ribosómico 16S , Filogenia , Dieta , Disacáridos , Oligosacáridos , Monosacáridos , Enfermedades Gastrointestinales/etiología , Esclerodermia Sistémica/complicaciones
2.
ACR Open Rheumatol ; 4(5): 417-425, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35174673

RESUMEN

OBJECTIVE: The study objective was to examine alterations in gastrointestinal (GI) microbial composition in patients with systemic sclerosis (SSc) and to investigate the relationship between SSc features and GI microbiota using two independent, international cohorts. METHODS: Prospective patients with SSc from Lund University (LU), Sweden, from the University of California, Los Angeles (UCLA), United States, and control subjects provided stool specimens for 16S ribosomal RNA sequencing. Alpha and beta diversity analyses were performed. Multivariate negative binomial models identified differentially abundant genera between groups. RESULTS: Patients from LU with SSc (n = 106) with recent SSc diagnosis (median disease duration 2.0 years) had lower abundance of commensal genera (eg, Faecalibacterium) and higher abundance of pathobiont genera (eg, Desulfovibrio) than LU-controls (n = 85). Patients from UCLA with SSc (n = 71) had a similar prevalence of females, a similar body mass index, and similar age but an increased disease duration (median 7.1 years) compared with patients from LU with SSc. Factors associated with beta diversity in patients with SSc from both LU and UCLA included disease duration (P = 0.0016), interstitial lung disease (P = 0.003), small intestinal bacterial overgrowth (P = 0.002), and immunosuppression use (P = 0.014). In multivariable analysis, the UCLA-SSc cohort had higher abundance of specific pathobiont genera (eg, Streptococcus) compared with the LU-SSc cohort. CONCLUSION: Enrichments and depletions in certain microbial genera were observed in patients recently diagnosed with SSc, suggesting that dysbiosis is present in early SSc. Specific disease features were independently associated with fecal microbial composition in both cohorts. After controlling for these factors, the abundance of several pathobiont bacteria differed between the cohorts, suggesting that environmental factors, along with disease manifestations, should be considered in future SSc studies.

3.
Chem Senses ; 38(7): 605-17, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23828906

RESUMEN

Temperature modulates the peripheral taste response of many animals, in part by activating transient receptor potential (Trp) cation channels. We hypothesized that temperature would also modulate peripheral taste responses in larval Manduca sexta. We recorded excitatory responses of the lateral and medial styloconic sensilla to chemical stimuli at 14, 22, and 30 °C. The excitatory responses to 5 chemical stimuli-a salt (KCl), 3 sugars (sucrose, glucose, and inositol) and an alkaloid (caffeine)-were unaffected by temperature. In contrast, the excitatory response to the aversive compound, aristolochic acid (AA), increased robustly with temperature. Next, we asked whether TrpA1 mediates the thermally dependent taste response to AA. To this end, we 1) identified a TrpA1 gene in M. sexta; 2) demonstrated expression of TrpA1 in the lateral and medial styloconic sensilla; 3) determined that 2 TrpA1 antagonists (HC-030031 and mecamylamine) inhibit the taste response to AA, but not caffeine; and then 4) established that the thermal dependence of the taste response to AA is blocked by HC-030031. Taken together, our results indicate that TrpA1 serves as a molecular integrator of taste and temperature in M. sexta.


Asunto(s)
Proteínas de Insectos/metabolismo , Manduca/fisiología , Neuronas/metabolismo , Gusto/fisiología , Acetanilidas , Animales , Ácidos Aristolóquicos/farmacología , Cafeína/farmacología , Proteínas de Insectos/genética , Manduca/genética , Maxilar/fisiología , Purinas , Receptores de Superficie Celular/metabolismo , Sensilos/fisiología , Transducción de Señal/fisiología , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/metabolismo , Gusto/efectos de los fármacos , Temperatura
4.
BMC Genomics ; 13: 211, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22646846

RESUMEN

BACKGROUND: Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. RESULTS: Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. CONCLUSIONS: We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.


Asunto(s)
Manduca/genética , Interferencia de ARN , Receptores Odorantes/antagonistas & inhibidores , Animales , Mapeo Contig , Biblioteca de Genes , Técnicas de Transferencia de Gen , Larva/genética , Larva/metabolismo , Manduca/clasificación , Manduca/crecimiento & desarrollo , Filogenia , ARN Bicatenario/metabolismo , Receptores Odorantes/clasificación , Receptores Odorantes/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...