Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J R Soc Med ; : 1410768231205430, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921538

RESUMEN

OBJECTIVES: To estimate the incidence of adverse events of interest (AEIs) after receiving their first and second doses of coronavirus disease 2019 (COVID-19) vaccinations, and to report the safety profile differences between the different COVID-19 vaccines. DESIGN: We used a self-controlled case series design to estimate the relative incidence (RI) of AEIs reported to the Oxford-Royal College of General Practitioners national sentinel network. We compared the AEIs that occurred seven days before and after receiving the COVID-19 vaccinations to background levels between 1 October 2020 and 12 September 2021. SETTING: England, UK. PARTICIPANTS: Individuals experiencing AEIs after receiving first and second doses of COVID-19 vaccines. MAIN OUTCOME MEASURES: AEIs determined based on events reported in clinical trials and in primary care during post-license surveillance. RESULTS: A total of 7,952,861 individuals were vaccinated with COVID-19 vaccines within the study period. Among them, 781,200 individuals (9.82%) presented to general practice with 1,482,273 AEIs. Within the first seven days post-vaccination, 4.85% of all the AEIs were reported. There was a 3-7% decrease in the overall RI of AEIs in the seven days after receiving both doses of Pfizer-BioNTech BNT162b2 (RI = 0.93; 95% CI: 0.91-0.94) and 0.96; 95% CI: 0.94-0.98), respectively) and Oxford-AstraZeneca ChAdOx1 (RI = 0.97; 95% CI: 0.95-0.98) for both doses), but a 20% increase after receiving the first dose of Moderna mRNA-1273 (RI = 1.20; 95% CI: 1.00-1.44)). CONCLUSIONS: COVID-19 vaccines are associated with a small decrease in the incidence of medically attended AEIs. Sentinel networks could routinely report common AEI rates, which could contribute to reporting vaccine safety.

2.
Euro Surveill ; 28(3)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695484

RESUMEN

BackgroundPost-authorisation vaccine safety surveillance is well established for reporting common adverse events of interest (AEIs) following influenza vaccines, but not for COVID-19 vaccines.AimTo estimate the incidence of AEIs presenting to primary care following COVID-19 vaccination in England, and report safety profile differences between vaccine brands.MethodsWe used a self-controlled case series design to estimate relative incidence (RI) of AEIs reported to the national sentinel network, the Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub. We compared AEIs (overall and by clinical category) 7 days pre- and post-vaccination to background levels between 1 October 2020 and 12 September 2021.ResultsWithin 7,952,861 records, 781,200 individuals (9.82%) presented to general practice with 1,482,273 AEIs, 4.85% within 7 days post-vaccination. Overall, medically attended AEIs decreased post-vaccination against background levels. There was a 3-7% decrease in incidence within 7 days after both doses of Comirnaty (RI: 0.93; 95% CI: 0.91-0.94 and RI: 0.96; 95% CI: 0.94-0.98, respectively) and Vaxzevria (RI: 0.97; 95% CI: 0.95-0.98). A 20% increase was observed after one dose of Spikevax (RI: 1.20; 95% CI: 1.00-1.44). Fewer AEIs were reported as age increased. Types of AEIs, e.g. increased neurological and psychiatric conditions, varied between brands following two doses of Comirnaty (RI: 1.41; 95% CI: 1.28-1.56) and Vaxzevria (RI: 1.07; 95% CI: 0.97-1.78).ConclusionCOVID-19 vaccines are associated with a small decrease in medically attended AEI incidence. Sentinel networks could routinely report common AEI rates, contributing to reporting vaccine safety.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas contra la Influenza , Humanos , Vacuna BNT162 , ChAdOx1 nCoV-19 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Inglaterra/epidemiología , Vacunas contra la Influenza/efectos adversos , Vacunación/efectos adversos
3.
JMIR Public Health Surveill ; 8(12): e39141, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36534462

RESUMEN

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) is one of Europe's oldest sentinel systems, working with the UK Health Security Agency (UKHSA) and its predecessor bodies for 55 years. Its surveillance report now runs twice weekly, supplemented by online observatories. In addition to conducting sentinel surveillance from a nationally representative group of practices, the RSC is now also providing data for syndromic surveillance. OBJECTIVE: The aim of this study was to describe the cohort profile at the start of the 2021-2022 surveillance season and recent changes to our surveillance practice. METHODS: The RSC's pseudonymized primary care data, linked to hospital and other data, are held in the Oxford-RCGP Clinical Informatics Digital Hub, a Trusted Research Environment. We describe the RSC's cohort profile as of September 2021, divided into a Primary Care Sentinel Cohort (PCSC)-collecting virological and serological specimens-and a larger group of syndromic surveillance general practices (SSGPs). We report changes to our sampling strategy that brings the RSC into alignment with European Centre for Disease Control guidance and then compare our cohort's sociodemographic characteristics with Office for National Statistics data. We further describe influenza and COVID-19 vaccine coverage for the 2020-2021 season (week 40 of 2020 to week 39 of 2021), with the latter differentiated by vaccine brand. Finally, we report COVID-19-related outcomes in terms of hospitalization, intensive care unit (ICU) admission, and death. RESULTS: As a response to COVID-19, the RSC grew from just over 500 PCSC practices in 2019 to 1879 practices in 2021 (PCSC, n=938; SSGP, n=1203). This represents 28.6% of English general practices and 30.59% (17,299,780/56,550,136) of the population. In the reporting period, the PCSC collected >8000 virology and >23,000 serology samples. The RSC population was broadly representative of the national population in terms of age, gender, ethnicity, National Health Service Region, socioeconomic status, obesity, and smoking habit. The RSC captured vaccine coverage data for influenza (n=5.4 million) and COVID-19, reporting dose one (n=11.9 million), two (n=11 million), and three (n=0.4 million) for the latter as well as brand-specific uptake data (AstraZeneca vaccine, n=11.6 million; Pfizer, n=10.8 million; and Moderna, n=0.7 million). The median (IQR) number of COVID-19 hospitalizations and ICU admissions was 1181 (559-1559) and 115 (50-174) per week, respectively. CONCLUSIONS: The RSC is broadly representative of the national population; its PCSC is geographically representative and its SSGPs are newly supporting UKHSA syndromic surveillance efforts. The network captures vaccine coverage and has expanded from reporting primary care attendances to providing data on onward hospital outcomes and deaths. The challenge remains to increase virological and serological sampling to monitor the effectiveness and waning of all vaccines available in a timely manner.


Asunto(s)
COVID-19 , Médicos Generales , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Vacunas contra la COVID-19 , Medicina Estatal , Vacunación , Reino Unido/epidemiología
6.
Arch Dis Child ; 107(8): 733-739, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35361613

RESUMEN

OBJECTIVES: To describe rates and variation in uptake of pneumococcal and measles, mumps and rubella (MMR) vaccines in children and associated change in vaccine-preventable diseases (VPDs) across the first and second waves of the COVID-19 pandemic. METHODS: Retrospective database study of all children aged <19 registered with a general practice in the Oxford Royal College of General Practitioners Research and Surveillance Centre English national sentinel surveillance network between 2 November 2015 and 18 July 2021. RESULTS: Coverage of booster dose of pneumococcal vaccine decreased from 94.5% (95% CI 94.3% to 94.7%) at its height on International Organization for Standardization (ISO) week 47 (2020) to 93.6% (95% CI 93.4% to 93.8%) by the end of the study. Coverage of second dose of MMR decreased from 85.0% (95% CI 84.7% to 85.3%) at its height on ISO week 37 (2020) to 84.1% (95% CI 83.8% to 84.4%) by the end of the study. The break point in trends for MMR was at ISO week 34 (2020) (95% CI weeks 32-37 (2020)), while for pneumococcal vaccine the break point was later at ISO week 3 (2021) (95% CI week 53 (2020) to week 8 (2021)). Vaccination coverage for children of white ethnicity was less likely to decrease than other ethnicities. Rates of consultation for VPDs fell and remained low since August 2020. CONCLUSION: Childhood vaccination rates started to fall ahead of the onset of the second wave; this fall is accentuating ethnic, socioeconomic and geographical disparities in vaccine uptake and risks widening health disparities. Social distancing and school closures may have contributed to lower rates of associated VPDs, but there may be increased risk as these measures are removed.


Asunto(s)
COVID-19 , Enfermedades Prevenibles por Vacunación , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Humanos , Lactante , Vacuna contra el Sarampión-Parotiditis-Rubéola , Pandemias , Vacunas Neumococicas , Estudios Retrospectivos , Vacunación
7.
J Infect ; 84(6): 814-824, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35405169

RESUMEN

OBJECTIVES: To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. METHODS: A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients' primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. RESULTS: We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1-5.3%) to 8.9% (95% CI 7.8-10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. CONCLUSIONS: Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2.


Asunto(s)
COVID-19 , Médicos Generales , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales , COVID-19/epidemiología , Inglaterra/epidemiología , Humanos , Persona de Mediana Edad , Atención Primaria de Salud , SARS-CoV-2 , Estudios Seroepidemiológicos , Adulto Joven
8.
JMIR Public Health Surveill ; 8(3): e25803, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35343907

RESUMEN

BACKGROUND: Vaccination is the most effective form of prevention of seasonal influenza; the United Kingdom has a national influenza vaccination program to cover targeted population groups. Influenza vaccines are known to be associated with some common minor adverse events of interest (AEIs), but it is not known if the adjuvanted trivalent influenza vaccine (aTIV), first offered in the 2018/2019 season, would be associated with more AEIs than other types of vaccines. OBJECTIVE: We aim to compare the incidence of AEIs associated with different types of seasonal influenza vaccines offered in the 2018/2019 season. METHODS: We carried out a retrospective cohort study using computerized medical record data from the Royal College of General Practitioners Research and Surveillance Centre sentinel network database. We extracted data on vaccine exposure and consultations for European Medicines Agency-specified AEIs for the 2018/2019 influenza season. We used a self-controlled case series design; computed relative incidence (RI) of AEIs following vaccination; and compared the incidence of AEIs associated with aTIV, the quadrivalent influenza vaccine, and the live attenuated influenza vaccine. We also compared the incidence of AEIs for vaccinations that took place in a practice with those that took place elsewhere. RESULTS: A total of 1,024,160 individuals received a seasonal influenza vaccine, of which 165,723 individuals reported a total of 283,355 compatible symptoms in the 2018/2019 season. Most AEIs occurred within 7 days following vaccination, with a seasonal effect observed. Using aTIV as the reference group, the quadrivalent influenza vaccine was associated with a higher incidence of AEIs (RI 1.46, 95% CI 1.41-1.52), whereas the live attenuated influenza vaccine was associated with a lower incidence of AEIs (RI 0.79, 95% CI 0.73-0.83). No effect of vaccination setting on the incidence of AEIs was observed. CONCLUSIONS: Routine sentinel network data offer an opportunity to make comparisons between safety profiles of different vaccines. Evidence that supports the safety of newer types of vaccines may be reassuring for patients and could help improve uptake in the future.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Vacunas contra la Influenza/efectos adversos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estudios Retrospectivos , Estaciones del Año , Vacunación/efectos adversos
9.
J Infect ; 84(5): 675-683, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34990709

RESUMEN

Background COVID-19 vaccines approved in the UK are highly effective in general population cohorts, however, data on effectiveness amongst individuals with clinical conditions that place them at increased risk of severe disease are limited. Methods We used GP electronic health record data, sentinel virology swabbing and antibody testing within a cohort of 712 general practices across England to estimate vaccine antibody response and vaccine effectiveness against medically attended COVID-19 amongst individuals in clinical risk groups using cohort and test-negative case control designs. Findings There was no reduction in S-antibody positivity in most clinical risk groups, however reduced S-antibody positivity and response was significant in the immunosuppressed group. Reduced vaccine effectiveness against clinical disease was also noted in the immunosuppressed group; after a second dose, effectiveness was moderate (Pfizer: 59.6%, 95%CI 18.0-80.1%; AstraZeneca 60.0%, 95%CI -63.6-90.2%). Interpretation In most clinical risk groups, immune response to primary vaccination was maintained and high levels of vaccine effectiveness were seen. Reduced antibody response and vaccine effectiveness were seen after 1 dose of vaccine amongst a broad immunosuppressed group, and second dose vaccine effectiveness was moderate. These findings support maximising coverage in immunosuppressed individuals and the policy of prioritisation of this group for third doses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Humanos , Inmunidad , SARS-CoV-2 , Eficacia de las Vacunas
10.
Lancet Reg Health Eur ; 2: 100029, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34557791

RESUMEN

BACKGROUND: The cell-based quadrivalent influenza vaccine (QIVc) is now offered as an alternative to egg-based quadrivalent (QIVe) and adjuvanted trivalent (aTIV) influenza vaccines in the UK. While post-licensure studies show non-inferiority of cell-based vaccines, it is not known how its safety profile compares to other types of vaccines in real-world use. METHODS: We conducted a retrospective cohort study using computerised medical records from the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network database. We used a self-controlled case series design and calculated the relative incidence (RI) of adverse events of interest (AEIs) over different risk periods. We then compared the RIs of AEIs within seven days of vaccination overall and between QIVc and QIVe in the 18-64 years age group, and between QIVc and aTIV in the ≥65 years age group. FINDINGS: The majority of AEIs occurred within seven days of vaccination, and a seasonal effect was observed. Using QIVc as the reference group, QIVe showed similar incidence of AEIs whereas live attenuated influenza vaccine (LAIV) and aTIV had lower incidence of AEIs. In the stratified analyses, QIVe and aTIV were associated with a 16% lower incidence of AEIs in the seven days post-vaccination in both the 18-64 years and ≥65 years age groups. INTERPRETATION: Routine sentinel network data allow comparisons of safety profiles of equally suitable seasonal influenza vaccines. The higher incidence of AEIs associated with QIVc suggest monitoring of several seasons would allow robust comparisons to be made. FUNDING: Public Health England.

11.
Diagn Progn Res ; 5(1): 4, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557927

RESUMEN

BACKGROUND: The aim of RApid community Point-of-care Testing fOR COVID-19 (RAPTOR-C19) is to assess the diagnostic accuracy of multiple current and emerging point-of-care tests (POCTs) for active and past SARS-CoV2 infection in the community setting. RAPTOR-C19 will provide the community testbed to the COVID-19 National DiagnOstic Research and Evaluation Platform (CONDOR). METHODS: RAPTOR-C19 incorporates a series of prospective observational parallel diagnostic accuracy studies of SARS-CoV2 POCTs against laboratory and composite reference standards in patients with suspected current or past SARS-CoV2 infection attending community settings. Adults and children with suspected current SARS-CoV2 infection who are having an oropharyngeal/nasopharyngeal (OP/NP) swab for laboratory SARS-CoV2 reverse transcriptase Digital/Real-Time Polymerase Chain Reaction (d/rRT-PCR) as part of clinical care or community-based testing will be invited to participate. Adults (≥ 16 years) with suspected past symptomatic infection will also be recruited. Asymptomatic individuals will not be eligible. At the baseline visit, all participants will be asked to submit samples for at least one candidate point-of-care test (POCT) being evaluated (index test/s) as well as an OP/NP swab for laboratory SARS-CoV2 RT-PCR performed by Public Health England (PHE) (reference standard for current infection). Adults will also be asked for a blood sample for laboratory SARS-CoV-2 antibody testing by PHE (reference standard for past infection), where feasible adults will be invited to attend a second visit at 28 days for repeat antibody testing. Additional study data (e.g. demographics, symptoms, observations, household contacts) will be captured electronically. Sensitivity, specificity, positive, and negative predictive values for each POCT will be calculated with exact 95% confidence intervals when compared to the reference standard. POCTs will also be compared to composite reference standards constructed using paired antibody test results, patient reported outcomes, linked electronic health records for outcomes related to COVID-19 such as hospitalisation or death, and other test results. DISCUSSION: High-performing POCTs for community use could be transformational. Real-time results could lead to personal and public health impacts such as reducing onward household transmission of SARS-CoV2 infection, improving surveillance of health and social care staff, contributing to accurate prevalence estimates, and understanding of SARS-CoV2 transmission dynamics in the population. In contrast, poorly performing POCTs could have negative effects, so it is necessary to undertake community-based diagnostic accuracy evaluations before rolling these out. TRIAL REGISTRATION: ISRCTN, ISRCTN14226970.

12.
JMIR Public Health Surveill ; 7(2): e24341, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33605892

RESUMEN

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) are commencing their 54th season of collaboration at a time when SARS-CoV-2 infections are likely to be cocirculating with the usual winter infections. OBJECTIVE: The aim of this study is to conduct surveillance of influenza and other monitored respiratory conditions and to report on vaccine uptake and effectiveness using nationally representative surveillance data extracted from primary care computerized medical records systems. We also aim to have general practices collect virology and serology specimens and to participate in trials and other interventional research. METHODS: The RCGP RSC network comprises over 1700 general practices in England and Wales. We will extract pseudonymized data twice weekly and are migrating to a system of daily extracts. First, we will collect pseudonymized, routine, coded clinical data for the surveillance of monitored and unexpected conditions; data on vaccine exposure and adverse events of interest; and data on approved research study outcomes. Second, we will provide dashboards to give general practices feedback about levels of care and data quality, as compared to other network practices. We will focus on collecting data on influenza-like illness, upper and lower respiratory tract infections, and suspected COVID-19. Third, approximately 300 practices will participate in the 2020-2021 virology and serology surveillance; this will include responsive surveillance and long-term follow-up of previous SARS-CoV-2 infections. Fourth, member practices will be able to recruit volunteer patients to trials, including early interventions to improve COVID-19 outcomes and point-of-care testing. Lastly, the legal basis for our surveillance with PHE is Regulation 3 of the Health Service (Control of Patient Information) Regulations 2002; other studies require appropriate ethical approval. RESULTS: The RCGP RSC network has tripled in size; there were previously 100 virology practices and 500 practices overall in the network and we now have 322 and 1724, respectively. The Oxford-RCGP Clinical Informatics Digital Hub (ORCHID) secure networks enable the daily analysis of the extended network; currently, 1076 practices are uploaded. We are implementing a central swab distribution system for patients self-swabbing at home in addition to in-practice sampling. We have converted all our primary care coding to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) coding. Throughout spring and summer 2020, the network has continued to collect specimens in preparation for the winter or for any second wave of COVID-19 cases. We have collected 5404 swabs and detected 623 cases of COVID-19 through extended virological sampling, and 19,341 samples have been collected for serology. This shows our preparedness for the winter season. CONCLUSIONS: The COVID-19 pandemic has been associated with a groundswell of general practices joining our network. It has also created a permissive environment in which we have developed the capacity and capability of the national primary care surveillance systems and our unique public health institute, the RCGP and University of Oxford collaboration.


Asunto(s)
Protocolos Clínicos , Gripe Humana/prevención & control , Infecciones del Sistema Respiratorio/prevención & control , Vacunas/uso terapéutico , COVID-19/prevención & control , Femenino , Humanos , Gripe Humana/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Vigilancia de la Población/métodos , Salud Pública , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Reino Unido , Tratamiento Farmacológico de COVID-19
13.
Br J Gen Pract ; 70(701): e890-e898, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33077508

RESUMEN

BACKGROUND: The SARS-CoV-2 pandemic has passed its first peak in Europe. AIM: To describe the mortality in England and its association with SARS-CoV-2 status and other demographic and risk factors. DESIGN AND SETTING: Cross-sectional analyses of people with known SARS-CoV-2 status in the Oxford RCGP Research and Surveillance Centre (RSC) sentinel network. METHOD: Pseudonymised, coded clinical data were uploaded from volunteer general practice members of this nationally representative network (n = 4 413 734). All-cause mortality was compared with national rates for 2019, using a relative survival model, reporting relative hazard ratios (RHR), and 95% confidence intervals (CI). A multivariable adjusted odds ratios (OR) analysis was conducted for those with known SARS-CoV-2 status (n = 56 628, 1.3%) including multiple imputation and inverse probability analysis, and a complete cases sensitivity analysis. RESULTS: Mortality peaked in week 16. People living in households of ≥9 had a fivefold increase in relative mortality (RHR = 5.1, 95% CI = 4.87 to 5.31, P<0.0001). The ORs of mortality were 8.9 (95% CI = 6.7 to 11.8, P<0.0001) and 9.7 (95% CI = 7.1 to 13.2, P<0.0001) for virologically and clinically diagnosed cases respectively, using people with negative tests as reference. The adjusted mortality for the virologically confirmed group was 18.1% (95% CI = 17.6 to 18.7). Male sex, population density, black ethnicity (compared to white), and people with long-term conditions, including learning disability (OR = 1.96, 95% CI = 1.22 to 3.18, P = 0.0056) had higher odds of mortality. CONCLUSION: The first SARS-CoV-2 peak in England has been associated with excess mortality. Planning for subsequent peaks needs to better manage risk in males, those of black ethnicity, older people, people with learning disabilities, and people who live in multi-occupancy dwellings.


Asunto(s)
COVID-19 , Enfermedades no Transmisibles/epidemiología , SARS-CoV-2/aislamiento & purificación , Factores de Edad , COVID-19/diagnóstico , COVID-19/epidemiología , Registros Electrónicos de Salud/estadística & datos numéricos , Inglaterra/epidemiología , Etnicidad , Composición Familiar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mortalidad , Medición de Riesgo/métodos , Factores de Riesgo , Vigilancia de Guardia , Factores Sexuales
14.
J Infect ; 81(5): 785-792, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858068

RESUMEN

OBJECTIVES: Few studies report contributors to the excess mortality in England during the first wave of coronavirus disease 2019 (COVID-19) infection. We report the absolute excess risk (AER) of mortality and excess mortality rate (EMR) from a nationally representative COVID-19 sentinel surveillance network including known COVID-19 risk factors in people aged 45 years and above. METHODS: Pseudonymised, coded clinical data were uploaded from contributing primary care providers (N = 1,970,314, ≥45years). We calculated the AER in mortality by comparing mortality for weeks 2 to 20 this year with mortality data from the Office for National Statistics (ONS) from 2018 for the same weeks. We conducted univariate and multivariate analysis including preselected variables. We report AER and EMR, with 95% confidence intervals (95% CI). RESULTS: The AER of mortality was 197.8/10,000 person years (95%CI:194.30-201.40). The EMR for male gender, compared with female, was 1.4 (95%CI:1.35-1.44, p<0.00); for our oldest age band (≥75 years) 10.09 (95%CI:9.46-10.75, p<0.00) compared to 45-64 year olds; Black ethnicity's EMR was 1.17 (95%CI: 1.03-1.33, p<0.02), reference white; and for dwellings with ≥9 occupants 8.01 (95%CI: 9.46-10.75, p<0.00). Presence of all included comorbidities significantly increased EMR. Ranked from lowest to highest these were: hypertension, chronic kidney disease, chronic respiratory and heart disease, and cancer or immunocompromised. CONCLUSIONS: The absolute excess mortality was approximately 2 deaths per 100 person years in the first wave of COVID-19. More personalised shielding advice for any second wave should include ethnicity, comorbidity and household size as predictors of risk.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/mortalidad , Neumonía Viral/epidemiología , Neumonía Viral/mortalidad , Factores de Edad , Anciano , Población Negra , COVID-19 , Comorbilidad , Infecciones por Coronavirus/etnología , Infecciones por Coronavirus/virología , Estudios Transversales , Inglaterra/epidemiología , Composición Familiar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/etnología , Neumonía Viral/virología , Factores de Riesgo , SARS-CoV-2 , Vigilancia de Guardia , Factores Sexuales , Población Blanca
15.
Br J Gen Pract ; 70(697): e540-e547, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32661009

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has resulted in a rapid change in workload across healthcare systems. Factors related to this adaptation in UK primary care have not yet been examined. AIM: To assess the responsiveness and prioritisation of primary care consultation type for older adults during the COVID-19 pandemic. DESIGN AND SETTING: A cross-sectional database study examining consultations between 17 February and 10 May 2020 for patients aged ≥65 years, drawn from primary care practices within the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network, UK. METHOD: The authors reported the proportion of consultation type across five categories: clinical administration, electronic/video, face-to-face, telephone, and home visits. Temporal trends in telephone and face-to-face consultations were analysed by polypharmacy, frailty status, and socioeconomic group using incidence rate ratios (IRR). RESULTS: Across 3 851 304 consultations, the population median age was 75 years (interquartile range [IQR] 70-82); and 46% (n = 82 926) of the cohort (N = 180 420) were male. The rate of telephone and electronic/video consultations more than doubled across the study period (106.0% and 102.8%, respectively). Face-to-face consultations fell by 64.6% and home visits by 62.6%. This predominantly occurred across week 11 (week commencing 9 March 2020), coinciding with national policy change. Polypharmacy and frailty were associated with a relative increase in consultations. The greatest relative increase was among people taking ≥10 medications compared with those taking none (face-to-face IRR 9.90, 95% CI = 9.55 to 10.26; telephone IRR 17.64, 95% CI = 16.89 to 18.41). CONCLUSION: Primary care has undergone an unprecedented in-pandemic reorganisation while retaining focus on patients with increased complexity.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/terapia , Visita Domiciliaria/estadística & datos numéricos , Neumonía Viral/terapia , Atención Primaria de Salud/organización & administración , Anciano , COVID-19 , Infecciones por Coronavirus/epidemiología , Estudios Transversales , Femenino , Médicos Generales/organización & administración , Humanos , Masculino , Pandemias , Neumonía Viral/epidemiología , SARS-CoV-2 , Reino Unido/epidemiología
16.
JMIR Public Health Surveill ; 6(3): e19773, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32484782

RESUMEN

BACKGROUND: Routinely recorded primary care data have been used for many years by sentinel networks for surveillance. More recently, real world data have been used for a wider range of research projects to support rapid, inexpensive clinical trials. Because the partial national lockdown in the United Kingdom due to the coronavirus disease (COVID-19) pandemic has resulted in decreasing community disease incidence, much larger numbers of general practices are needed to deliver effective COVID-19 surveillance and contribute to in-pandemic clinical trials. OBJECTIVE: The aim of this protocol is to describe the rapid design and development of the Oxford Royal College of General Practitioners Clinical Informatics Digital Hub (ORCHID) and its first two platforms. The Surveillance Platform will provide extended primary care surveillance, while the Trials Platform is a streamlined clinical trials platform that will be integrated into routine primary care practice. METHODS: We will apply the FAIR (Findable, Accessible, Interoperable, and Reusable) metadata principles to a new, integrated digital health hub that will extract routinely collected general practice electronic health data for use in clinical trials and provide enhanced communicable disease surveillance. The hub will be findable through membership in Health Data Research UK and European metadata repositories. Accessibility through an online application system will provide access to study-ready data sets or developed custom data sets. Interoperability will be facilitated by fixed linkage to other key sources such as Hospital Episodes Statistics and the Office of National Statistics using pseudonymized data. All semantic descriptors (ie, ontologies) and code used for analysis will be made available to accelerate analyses. We will also make data available using common data models, starting with the US Food and Drug Administration Sentinel and Observational Medical Outcomes Partnership approaches, to facilitate international studies. The Surveillance Platform will provide access to data for health protection and promotion work as authorized through agreements between Oxford, the Royal College of General Practitioners, and Public Health England. All studies using the Trials Platform will go through appropriate ethical and other regulatory approval processes. RESULTS: The hub will be a bottom-up, professionally led network that will provide benefits for member practices, our health service, and the population served. Data will only be used for SQUIRE (surveillance, quality improvement, research, and education) purposes. We have already received positive responses from practices, and the number of practices in the network has doubled to over 1150 since February 2020. COVID-19 surveillance has resulted in tripling of the number of virology sites to 293 (target 300), which has aided the collection of the largest ever weekly total of surveillance swabs in the United Kingdom as well as over 3000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology samples. Practices are recruiting to the PRINCIPLE (Platform Randomised trial of INterventions against COVID-19 In older PeopLE) trial, and these participants will be followed up through ORCHID. These initial outputs demonstrate the feasibility of ORCHID to provide an extended national digital health hub. CONCLUSIONS: ORCHID will provide equitable and innovative use of big data through a professionally led national primary care network and the application of FAIR principles. The secure data hub will host routinely collected general practice data linked to other key health care repositories for clinical trials and support enhanced in situ surveillance without always requiring large volume data extracts. ORCHID will support rapid data extraction, analysis, and dissemination with the aim of improving future research and development in general practice to positively impact patient care. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/19773.


Asunto(s)
Ensayos Clínicos como Asunto , Infecciones por Coronavirus/epidemiología , Medicina General/organización & administración , Sistemas de Registros Médicos Computarizados , Neumonía Viral/epidemiología , Vigilancia en Salud Pública , COVID-19 , Humanos , Pandemias , Atención Primaria de Salud/organización & administración , Sociedades Médicas , Reino Unido/epidemiología
18.
Lancet Infect Dis ; 20(9): 1034-1042, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32422204

RESUMEN

BACKGROUND: There are few primary care studies of the COVID-19 pandemic. We aimed to identify demographic and clinical risk factors for testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre primary care network. METHODS: We analysed routinely collected, pseudonymised data for patients in the RCGP Research and Surveillance Centre primary care sentinel network who were tested for SARS-CoV-2 between Jan 28 and April 4, 2020. We used multivariable logistic regression models with multiple imputation to identify risk factors for positive SARS-CoV-2 tests within this surveillance network. FINDINGS: We identified 3802 SARS-CoV-2 test results, of which 587 were positive. In multivariable analysis, male sex was independently associated with testing positive for SARS-CoV-2 (296 [18·4%] of 1612 men vs 291 [13·3%] of 2190 women; adjusted odds ratio [OR] 1·55, 95% CI 1·27-1·89). Adults were at increased risk of testing positive for SARS-CoV-2 compared with children, and people aged 40-64 years were at greatest risk in the multivariable model (243 [18·5%] of 1316 adults aged 40-64 years vs 23 [4·6%] of 499 children; adjusted OR 5·36, 95% CI 3·28-8·76). Compared with white people, the adjusted odds of a positive test were greater in black people (388 [15·5%] of 2497 white people vs 36 [62·1%] of 58 black people; adjusted OR 4·75, 95% CI 2·65-8·51). People living in urban areas versus rural areas (476 [26·2%] of 1816 in urban areas vs 111 [5·6%] of 1986 in rural areas; adjusted OR 4·59, 95% CI 3·57-5·90) and in more deprived areas (197 [29·5%] of 668 in most deprived vs 143 [7·7%] of 1855 in least deprived; adjusted OR 2·03, 95% CI 1·51-2·71) were more likely to test positive. People with chronic kidney disease were more likely to test positive in the adjusted analysis (68 [32·9%] of 207 with chronic kidney disease vs 519 [14·4%] of 3595 without; adjusted OR 1·91, 95% CI 1·31-2·78), but there was no significant association with other chronic conditions in that analysis. We found increased odds of a positive test among people who are obese (142 [20·9%] of 680 people with obesity vs 171 [13·2%] of 1296 normal-weight people; adjusted OR 1·41, 95% CI 1·04-1·91). Notably, active smoking was linked with decreased odds of a positive test result (47 [11·4%] of 413 active smokers vs 201 [17·9%] of 1125 non-smokers; adjusted OR 0·49, 95% CI 0·34-0·71). INTERPRETATION: A positive SARS-CoV-2 test result in this primary care cohort was associated with similar risk factors as observed for severe outcomes of COVID-19 in hospital settings, except for smoking. We provide evidence of potential sociodemographic factors associated with a positive test, including deprivation, population density, ethnicity, and chronic kidney disease. FUNDING: Wellcome Trust.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Adolescente , Adulto , Factores de Edad , Anciano , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Población Negra , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/etnología , Infecciones por Coronavirus/etiología , Estudios Transversales , Inglaterra/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Análisis Multivariante , Obesidad/complicaciones , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/etnología , Neumonía Viral/etiología , Áreas de Pobreza , Reacción en Cadena en Tiempo Real de la Polimerasa , Insuficiencia Renal Crónica/complicaciones , Factores de Riesgo , Población Rural , SARS-CoV-2 , Factores Sexuales , Fumar , Población Urbana , Adulto Joven
19.
JMIR Public Health Surveill ; 6(2): e18606, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32240095

RESUMEN

BACKGROUND: The Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) have successfully worked together on the surveillance of influenza and other infectious diseases for over 50 years, including three previous pandemics. With the emergence of the international outbreak of the coronavirus infection (COVID-19), a UK national approach to containment has been established to test people suspected of exposure to COVID-19. At the same time and separately, the RCGP RSC's surveillance has been extended to monitor the temporal and geographical distribution of COVID-19 infection in the community as well as assess the effectiveness of the containment strategy. OBJECTIVES: The aims of this study are to surveil COVID-19 in both asymptomatic populations and ambulatory cases with respiratory infections, ascertain both the rate and pattern of COVID-19 spread, and assess the effectiveness of the containment policy. METHODS: The RCGP RSC, a network of over 500 general practices in England, extract pseudonymized data weekly. This extended surveillance comprises of five components: (1) Recording in medical records of anyone suspected to have or who has been exposed to COVID-19. Computerized medical records suppliers have within a week of request created new codes to support this. (2) Extension of current virological surveillance and testing people with influenza-like illness or lower respiratory tract infections (LRTI)-with the caveat that people suspected to have or who have been exposed to COVID-19 should be referred to the national containment pathway and not seen in primary care. (3) Serology sample collection across all age groups. This will be an extra blood sample taken from people who are attending their general practice for a scheduled blood test. The 100 general practices currently undertaking annual influenza virology surveillance will be involved in the extended virological and serological surveillance. (4) Collecting convalescent serum samples. (5) Data curation. We have the opportunity to escalate the data extraction to twice weekly if needed. Swabs and sera will be analyzed in PHE reference laboratories. RESULTS: General practice clinical system providers have introduced an emergency new set of clinical codes to support COVID-19 surveillance. Additionally, practices participating in current virology surveillance are now taking samples for COVID-19 surveillance from low-risk patients presenting with LRTIs. Within the first 2 weeks of setup of this surveillance, we have identified 3 cases: 1 through the new coding system, the other 2 through the extended virology sampling. CONCLUSIONS: We have rapidly converted the established national RCGP RSC influenza surveillance system into one that can test the effectiveness of the COVID-19 containment policy. The extended surveillance has already seen the use of new codes with 3 cases reported. Rapid sharing of this protocol should enable scientific critique and shared learning. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/18606.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Coronavirus , Notificación de Enfermedades/métodos , Sistemas de Registros Médicos Computarizados , Pandemias/prevención & control , Neumonía Viral/epidemiología , Vigilancia en Salud Pública/métodos , Betacoronavirus , COVID-19 , Brotes de Enfermedades , Inglaterra/epidemiología , Femenino , Humanos , Masculino , Salud Pública , SARS-CoV-2 , Vigilancia de Guardia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...