Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 29(10): 2101-2111, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32812680

RESUMEN

Although Hsp90-family chaperones have been extensively targeted with ATP-competitive inhibitors, it is unknown whether high affinity is achieved from a few highly stabilizing contacts or from many weaker contacts within the ATP-binding pocket. A large-scale analysis of Hsp90α:inhibitor structures shows that inhibitor hydrogen-bonding to a conserved aspartate (D93 in Hsp90α) stands out as most universal among Hsp90 inhibitors. Here we show that the D93 region makes a dominant energetic contribution to inhibitor binding for both cytosolic and organelle-specific Hsp90 paralogs. For inhibitors in the resorcinol family, the D93:inhibitor hydrogen-bond is pH-dependent because the associated inhibitor hydroxyl group is titratable, rationalizing a linked-protonation event previously observed by the Matulis group. The inhibitor hydroxyl group pKa associated with the D93 hydrogen-bond is therefore critical for optimizing the affinity of resorcinol derivatives, and we demonstrate that spectrophotometric measurements can determine this pKa value. Quantifying the energetic contribution of the D93 hotspot is best achieved with the mitochondrial Hsp90 paralog, yielding 3-6 kcal/mol of stabilization (35-60% of the total binding energy) for a diverse set of inhibitors. The Hsp90 Asp93➔Asn substitution has long been known to abolish nucleotide binding, yet puzzlingly, native sequences of structurally similar ATPases, such as Topoisomerasese II, have an asparagine at this same crucial site. While aspartate and asparagine sidechains can both act as hydrogen bond acceptors, we show that a steric clash prevents the Hsp90 Asp93➔Asn sidechain from adopting the necessary rotamer, whereas this steric restriction is absent in Topoisomerasese II.


Asunto(s)
Adenosina Trifosfato/química , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Sustitución de Aminoácidos , Sitios de Unión , Proteínas HSP90 de Choque Térmico/metabolismo , Enlace de Hidrógeno , Mutación Missense , Unión Proteica
2.
Protein Sci ; 26(6): 1206-1213, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383119

RESUMEN

Hsp90 is a dimeric molecular chaperone that undergoes an essential and highly regulated open-to-closed-to-open conformational cycle upon ATP binding and hydrolysis. Although it has been established that a large energy barrier to closure is responsible for Hsp90's low ATP hydrolysis rate, the specific molecular contacts that create this energy barrier are not known. Here we discover that bacterial Hsp90 (HtpG) has a pH-dependent ATPase activity that is unique among other Hsp90 homologs. The underlying mechanism is a conformation-specific electrostatic interaction between a single histidine, H255, and bound ATP. H255 stabilizes ATP only while HtpG adopts a catalytically inactive open configuration, resulting in a striking anti-correlation between nucleotide binding affinity and chaperone activity over a wide range of pH. Linkage analysis reveals that the H255-ATP salt bridge contributes 1.5 kcal/mol to the energy barrier of closure. This energetic contribution is structurally asymmetric, whereby only one H255-ATP salt-bridge per dimer of HtpG controls ATPase activation. We find that a similar electrostatic mechanism regulates the ATPase of the endoplasmic reticulum Hsp90, and that pH-dependent activity can be engineered into eukaryotic cytosolic Hsp90. These results reveal site-specific energetic information about an evolutionarily conserved conformational landscape that controls Hsp90 ATPase activity.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas HSP90 de Choque Térmico/química , Multimerización de Proteína , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Concentración de Iones de Hidrógeno , Dominios Proteicos , Estructura Cuaternaria de Proteína
3.
Nucleic Acids Res ; 44(19): 9180-9189, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27402158

RESUMEN

Eukaryotic gene expression requires that RNA Polymerase II (RNAP II) gain access to DNA in the context of chromatin. The C-terminal domain (CTD) of RNAP II recruits chromatin modifying enzymes to promoters, allowing for transcription initiation or repression. Specific CTD phosphorylation marks facilitate recruitment of chromatin modifiers, transcriptional regulators, and RNA processing factors during the transcription cycle. However, the readable code for recruiting such factors is still not fully defined and how CTD modifications affect related families of genes or regional gene expression is not well understood. Here, we examine the effects of manipulating the Y1S2P3T4S5P6S7 heptapeptide repeat of the CTD of RNAP II in Schizosaccharomyces pombe by substituting non-phosphorylatable alanines for Ser2 and/or Ser7 and the phosphomimetic glutamic acid for Ser7. Global gene expression analyses were conducted using splicing-sensitive microarrays and validated via RT-qPCR. The CTD mutations did not affect pre-mRNA splicing or snRNA levels. Rather, the data revealed upregulation of subtelomeric genes and alteration of the repressive histone H3 lysine 9 methylation (H3K9me) landscape. The data further indicate that H3K9me and expression status are not fully correlated, suggestive of CTD-dependent subtelomeric repression mechansims that act independently of H3K9me levels.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Genes Fúngicos , Histonas , Metilación , Fosforilación , Unión Proteica , ARN Polimerasa II/química , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Reproducibilidad de los Resultados , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Empalmosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...