Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30879872

RESUMEN

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Ecosistema
2.
J Hered ; 109(7): 724-734, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30184088

RESUMEN

Mitochondrial DNA (mtDNA) differences between humpback whales on different feeding grounds can reflect the cultural transmission of migration destinations over generations, and therefore represent one of the very few cases of gene-culture coevolution identified in the animal kingdom. In Russian Pacific waters, photo-identification (photo-ID) studies have shown minimal interchange between whales feeding off the Commander Islands and those feeding in the Karaginsky Gulf, regions that are separated by only 500 km and have previously been lumped together as a single Russian feeding ground. Here, we assessed whether genetic differentiation exists between these 2 groups of humpback whales. We discovered a strong mtDNA differentiation between the 2 feeding sites (FST = 0.18, ΦST = 0.14, P < 0.001). In contrast, nuclear DNA (nuDNA) polymorphisms, determined at 8 microsatellite loci, did not reveal any differentiation. Comparing our mtDNA results with those from a previous ocean-basin study reinforced the differences between the 2 feeding sites. Humpback whales from the Commanders appeared most similar to those of the western Gulf of Alaska and the Aleutian feeding grounds, whereas Karaginsky differed from all other North Pacific feeding grounds. Comparison to breeding grounds suggests mixed origins for the 2 feeding sites; there are likely connections between Karaginsky and the Philippines and to a lesser extent to Okinawa, Japan, whereas the Commanders are linked to the Mexican breeding grounds. The mtDNA differentiation between the Commander Islands and Karaginsky Gulf suggests a case of gene-culture coevolution, correlated to fidelity to a specific feeding site within a particular feeding ground. From a conservation perspective, our findings emphasize the importance of considering these 2 feeding sites as separate management units.


Asunto(s)
Conducta Alimentaria , Variación Genética , Yubarta/genética , Migración Animal , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Femenino , Genotipo , Masculino , Repeticiones de Microsatélite/genética , Océano Pacífico , Procesos de Determinación del Sexo
3.
J Hered ; 109(7): 735-743, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30053000

RESUMEN

In the North Pacific, fish-eating R-type "resident" and mammal-eating T-type "transient" killer whales do not interbreed and differ in ecology and behavior. Full-length mitochondrial genomes (about 16.4 kbp) were sequenced and assembled for 12 R-type and 14 T-type killer whale samples from different areas of the western North Pacific. All R-type individuals had the same haplotype, previously described for R-type killer whales from both eastern and western North Pacific. However, haplotype diversity of R-type killer whales was much lower in the western North Pacific than in the Aleutian Islands and the eastern North Pacific. T-type whales had 3 different haplotypes, including one previously undescribed. Haplotype diversity of T-type killer whales in the Okhotsk Sea was also much lower than in the Aleutian Islands and the eastern North Pacific. The highest haplotype diversity for both R- and T-type killer whales was observed in the Aleutian Islands. We discuss how the environmental conditions during the last glacial period might have shaped the history of killer whale populations in the North Pacific. Our results suggest the recent colonization or re-colonization of the western North Pacific by small groups of killer whales originating from the central or eastern North Pacific, possibly due to favorable environmental changes after the Last Glacial Maximum.


Asunto(s)
Efecto Fundador , Variación Genética , Genoma Mitocondrial , Orca/genética , Animales , Haplotipos , Océano Pacífico
4.
J Acoust Soc Am ; 140(5): 3755, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27908070

RESUMEN

Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4 kHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.


Asunto(s)
Orca , Animales , Evolución Cultural , Sonido , Espectrografía del Sonido , Vocalización Animal
5.
J Acoust Soc Am ; 138(1): 251-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26233024

RESUMEN

Killer whale populations may differ in genetics, morphology, ecology, and behavior. In the North Pacific, two sympatric populations ("resident" and "transient") specialize on different prey (fish and marine mammals) and retain reproductive isolation. In the eastern North Atlantic, whales from the same populations have been observed feeding on both fish and marine mammals. Fish-eating North Pacific "residents" are more genetically related to eastern North Atlantic killer whales than to sympatric mammal-eating "transients." In this paper, a comparison of frequency variables in killer whale calls recorded from four North Pacific resident, two North Pacific transient, and two eastern North Atlantic populations is reported to assess which factors drive the large-scale changes in call structure. Both low-frequency and high-frequency components of North Pacific transient killer whale calls have significantly lower frequencies than those of the North Pacific resident and North Atlantic populations. The difference in frequencies could be related to ecological specialization or to the phylogenetic history of these populations. North Pacific transient killer whales may have genetically inherited predisposition toward lower frequencies that may shape their learned repertoires.


Asunto(s)
Ecotipo , Simpatría/fisiología , Vocalización Animal , Orca/fisiología , Animales , Océano Atlántico , Conducta Alimentaria , Océano Pacífico , Sonido
6.
Behav Processes ; 99: 34-41, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23796775

RESUMEN

The killer whale is among the few species in which cultural change accumulates over many generations, leading to cumulative cultural evolution. Killer whales have group-specific vocal repertoires which are thought to be learned rather than being genetically coded. It is supposed that divergence between vocal repertoires of sister groups increases gradually over time due to random learning mistakes and innovations. In this case, the similarity of calls across groups must be correlated with pod relatedness and, consequently, with each other. In this study we tested this prediction by comparing the patterns of call similarity between matrilines of resident killer whales from Eastern Kamchatka. We calculated the similarity of seven components from three call types across 14 matrilines. In contrast to the theoretical predictions, matrilines formed different clusters on the dendrograms made by different calls and even by different components of the same call. We suggest three possible explanations for this phenomenon. First, the lack of agreement between similarity patterns of different components may be the result of constraints in the call structure. Second, it is possible that call components change in time with different speed and/or in different directions. Third, horizontal cultural transmission of call features may occur between matrilines.


Asunto(s)
Comunicación Animal , Evolución Biológica , Vocalización Animal/fisiología , Orca/fisiología , Animales , Interpretación Estadística de Datos , Conducta Social , Espectrografía del Sonido
7.
J Acoust Soc Am ; 132(6): 3618-21, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23231094

RESUMEN

Ultrasonic whistles were previously found in North Atlantic killer whales and were suggested to occur in eastern North Pacific killer whales based on the data from autonomous recorders. In this study ultrasonic whistles were found in the recordings from two encounters with the eastern North Pacific offshore ecotype killer whales and one encounter with the western North Pacific killer whales of unknown ecotype. All ultrasonic whistles were highly stereotyped and all but two had downsweep contours. These results demonstrate that specific sound categories can be shared by killer whales from different ocean basins.


Asunto(s)
Canto , Ultrasonido , Orca/fisiología , Animales , Masculino , Océano Pacífico , Espectrografía del Sonido
8.
PLoS One ; 6(11): e26738, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22096495

RESUMEN

Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada-US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict between conservation objectives for threatened or protected wildlife where the interaction between affected species can be quantified.


Asunto(s)
Conducta Predatoria/fisiología , Salmón/fisiología , Orca/fisiología , Animales , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...