Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 31(2): 405-12, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-8756605

RESUMEN

A family of calcium-responsive protein kinases is abundant in plant cell extracts but has not been identified in animals and fungi. These enzymes have a unique structure consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. In this report, we present the amino acid sequences for eight new Arabidopsis cDNA clones encoding isoforms of this enzyme. Three isoforms were expressed as fusion proteins in Escherichia coli and exhibited calcium-stimulated protein kinase activity. We propose CPK as the gene designation for this family of enzymes and describe a phylogenetic analysis for all known isoforms.


Asunto(s)
Arabidopsis/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Genes de Plantas , Arabidopsis/enzimología , Clonación Molecular , ADN Complementario/genética , Isoenzimas/genética , Datos de Secuencia Molecular , Peso Molecular , Familia de Multigenes , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Terminología como Asunto
2.
J Bacteriol ; 174(9): 3011-20, 1992 May.
Artículo en Inglés | MEDLINE | ID: mdl-1314807

RESUMEN

The lemA gene of the plant pathogen Pseudomonas syringae pv. syringae is required for disease lesion formation on bean plants. Cosmid clones that complemented a lemA mutant in trans were isolated previously. The lemA gene was localized by subcloning and transposon mutagenesis. The lemA region and flanking DNA were sequenced, and an open reading frame of 2.7 kb was identified. The nucleotide and predicted amino acid sequences of the lemA gene showed sequence similarity to a family of prokaryotic two-component regulatory proteins. Unlike most of the previously described two-component systems, the lemA gene product contained homology to both components in one protein. Mutations introduced upstream and downstream of the lemA gene failed to locate a gene for a second protein component but identified the putative cysM gene of P. syringae pv. syringae. The cysM gene was located upstream of the lemA gene and was divergently transcribed. The lemA gene product was expressed at low levels in P. syringae pv. syringae and appeared to be positively auto-regulated.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes/genética , Pseudomonas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Elementos Transponibles de ADN , Histidina Quinasa , Datos de Secuencia Molecular , Mutagénesis Insercional , Fosforilación , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Ácido Nucleico
3.
J Bacteriol ; 173(17): 5371-84, 1991 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1885517

RESUMEN

The interaction between Rhizobium lipopolysaccharide (LPS) and white clover roots was examined. The Limulus lysate assay indicated that Rhizobium leguminosarum bv. trifolii (hereafter called R. trifolii) released LPS into the external root environment of slide cultures. Immunofluorescence and immunoelectron microscopy showed that purified LPS from R. trifolii 0403 bound rapidly to root hair tips and infiltrated across the root hair wall. Infection thread formation in root hairs was promoted by preinoculation treatment of roots with R. trifolii LPS at a low dose (up to 5 micrograms per plant) but inhibited at a higher dose. This biological activity of LPS was restricted to the region of the root present at the time of exposure to LPS, higher with LPS from cells in the early stationary phase than in the mid-exponential phase, incubation time dependent, incapable of reversing inhibition of infection by NO3- or NH4+, and conserved among serologically distinct LPSs from several wild-type R. trifolii strains (0403, 2S-2, and ANU843). In contrast, infections were not increased by preinoculation treatment of roots with LPSs from R. leguminosarum bv. viciae strain 300, R. meliloti 102F28, or members of the family Enterobacteriaceae. Most infection threads developed successfully in root hairs pretreated with R. trifolii LPS, whereas many infections aborted near their origins and accumulated brown deposits if pretreated with LPS from R. meliloti 102F28. LPS from R. leguminosarum 300 also caused most infection threads to abort. Other specific responses of root hairs to infection-stimulating LPS from R. trifolii included acceleration of cytoplasmic streaming and production of novel proteins. Combined gas chromatography-mass spectroscopy and proton nuclear magnetic resonance analyses indicated that biologically active LPS from R. trifolii 0403 in the early stationary phase had less fucose but more 2-O-methylfucose, quinovosamine, 3,6-dideoxy-3-(methylamino)galactose, and noncarbohydrate substituents (O-methyl, N-methyl, and acetyl groups) on glycosyl components than did inactive LPS in the mid-exponential phase. We conclude that LPS-root hair interactions trigger metabolic events that have a significant impact on successful development of infection threads in this Rhizobium-legume symbiosis.


Asunto(s)
Fabaceae/microbiología , Lipopolisacáridos/metabolismo , Plantas Medicinales , Rhizobium/metabolismo , Simbiosis , Western Blotting , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Fabaceae/metabolismo , Fabaceae/ultraestructura , Técnica del Anticuerpo Fluorescente , Microscopía Electrónica
4.
Carbohydr Res ; 154: 103-13, 1986 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-3791291

RESUMEN

A direct synthetic route from methyl alpha-D-glucopyranoside to 3,6-dideoxy-3-(methylamino)hexoses having the D-gluco, D-galacto, and D-manno configurations has been developed. Methyl alpha-D-glucoside was converted into the 4,6-O-benzylidene-2,3-di-O-tosyl derivative, which was then transformed into the 4-O-benzyl-6-deoxy 2,3-ditosylate (5) by successive reductive cleavage of the acetal ring, iodination, and reduction. The intermediate 5 was readily converted into the allo 2,3-epoxide, which yielded the pivotal intermediate methyl 4-O-benzyl-3,6-dideoxy-3-(methylamino)-alpha-D-glucopyranoside (7) by cleavage of the oxirane ring with methylamine. The amino compound 7 can be directly converted into the derivatized galacto and manno derivatives for mass-spectrometric identification by selective inversion at C-4 and C-2, respectively, followed by hydrolysis, reduction, and acetylation.


Asunto(s)
Amino Azúcares/síntesis química , Hexosas/síntesis química , Lipopolisacáridos , Rhizobium/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética/métodos , Rotación Óptica
5.
J Gen Microbiol ; 131(12): 3287-302, 1985 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-3831234

RESUMEN

Anomalous nodulation of Trifolium subterraneum (subterranean clover) roots by Rhizobium leguminosarum 1020 was examined as a model of modified host-specificity in a Rhizobium-legume symbiosis. Consistent with previous reports, these nodules (i) appeared most often at sites of secondary root emergence, (ii) were ineffective in nitrogen fixation and (iii) were as numerous as nodules formed by an effective Rhizobium trifolii strain. R. leguminosarum 1020, grown on agar plates or in the clover root environment, did not bind the white clover lectin, trifoliin A. This strain did not attach in high numbers, and did not induce shepherd's crooks or infection threads, in subterranean clover root hairs. However, R. leguminosarum 1020 did cause branching, moderate curling and other deformations of root hairs. The bacteria probably entered the clover root through breaks in the epidermis at sites of lateral root emergence. The anomalous nodulation was inhibited by nitrate. Only trace amounts of leghaemoglobin were detected in the nodules by Western blot analysis. The nodules were of the meristematic type and initially contained well-developed infection, bacteroid and senescent zones. Infection threads were readily found in the infection zone of the nodule. However, the bacteroid-containing tissue senesced more rapidly than in the effective symbiosis between subterranean clover and R. trifolii 0403. This anomalous nodulation of subterranean clover by R. leguminosarum 1020 suggests a naturally-occurring alternative route of infection that allows Rhizobium to enlarge its host range.


Asunto(s)
Fabaceae/microbiología , Plantas Medicinales , Rhizobium/crecimiento & desarrollo , Simbiosis , Autorradiografía , Fabaceae/ultraestructura , Leghemoglobina/análisis , Microscopía Electrónica , Nitratos/metabolismo , Rhizobium/ultraestructura
6.
Appl Environ Microbiol ; 48(6): 1140-50, 1984 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-6393874

RESUMEN

The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Plantas/microbiología , Rhizobium/ultraestructura , Microscopía de Contraste de Fase , Rhizobium/fisiología , Microbiología del Suelo
7.
Appl Environ Microbiol ; 44(2): 478-90, 1982 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16346081

RESUMEN

The effect of white clover root exudate on capsules of Rhizobium trifolii 0403 was examined. The clover lectin trifoliin A was detected in root exudate of two clover varieties by indirect immunofluorescence with antibody against this lectin purified from clover seed. Trifoliin A bound uniformly to encapsulated, heat-fixed cells during 1 h of incubation with root exudate. After 4 to 8 h of incubation, trifoliin A was only bound to one pole of the cells. Transmission electron microscopy showed that the capsule itself was altered. The disorganization of the acidic polymers of the capsule began in the equatorial center of the rod-shaped cell and then progressed toward the poles at unequal rates. Trifoliin A could no longer be detected on heat-fixed cells after 12 h of incubation with root exudate. However, trifoliin A was detected in situ on one pole of cells grown for 4 days in the clover root environment of Fahraeus slide cultures. Inhibition studies with the hapten 2-deoxy-d-glucose showed that trifoliin A in root exudate had a higher affinity for one of the cell poles. Immunoelectrophoresis was used to monitor the alteration of the extracellular polysaccharides from R. trifolii 0403 by concentrated root exudate. These polysaccharides were converted into products which eventually lost their ability to immunoprecipitate with homologous antibody. This progressive loss of antigenic reactivity proceeded more rapidly with root exudate from seedlings grown under nitrogen-free conditions than with root exudate from plants grown with 15 mM KNO(3). The root exudate, depleted of trifoliin A by immunoaffinity chromatography, was still able to alter the capsule of R. trifolii 0403. Reconstitution experiments showed that the substance(s) in root exudate which induced this alteration of the capsule was of a high molecular weight, heat labile, trypsin sensitive, and antigenically unrelated to trifoliin A. A variety of glycosidase activities were also detected in the fraction depleted of trifoliin A. These results suggest that enzymes in clover root exudate alter the trifoliin A-binding capsule in a way which would favor polar attachment of R. trifolii to clover root hairs.

8.
J Bacteriol ; 148(2): 697-711, 1981 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-6170630

RESUMEN

The lipopolysaccharide (LPS) from Rhizobium trifolii 0403 was isolated at different stages of growth and was examined for its (i) ability to bind a white clover lectin (trifoliin A), (ii) immunochemical properties, and (iii) composition. There was significantly more binding of trifoliin A to purified LPS and cells in the early stationary phase than to cells in the exponential phase. Immunofluorescence and enzyme-linked immunosorbent assays indicated that new antigenic determinants of the LPS appeared for brief periods on cells at the end of the lag phase and again at the beginning of the stationary phase. These new antigens were not detected on cells in midexponential or late stationary phase. Monovalent fragments of immunoglobulin G antibodies raised against the unique antigenic determinants in the LPS competitively blocked the binding of trifoliin A to cells in the early stationary phase. Gas chromatographic analysis showed that the relative quantity of several glycosyl components in the LPS increased as the culture advanced from the midexponential to the early stationary phase. In addition, LPS from cells in the early stationary phase had a higher aggregate molecular weight. Quinovosamine (2-amino-2,6-dideoxyglucose) was identified by combined gas chromatography-mass spectrometry as a sugar component of the LPS which had not been previously reported. D-Quinovosamine, N-acetyl-D-quinovosamine, and its n-propyl-beta-glycoside were effective hapten sugars which inhibited the binding of trifoliin A, anti-clover root antibody, and homologous antibody to these new determinants in the LPS. White clover plants had more infected root hairs after incubation with an inoculum of cells in the early stationary phase than after incubation with cells in the midexponential phase. The profound influence of the growth phase on the composition of lectin-binding polysaccharides of Rhizobium may be a major underlying cause of conflicting data among laboratories testing the lectin-recognition hypothesis. In addition, these chemical modifications may reflect mechanisms which regulate Rhizobium-root hair recognition in this nitrogen-fixing symbiosis.


Asunto(s)
Flavonoides/metabolismo , Lipopolisacáridos/metabolismo , Quercetina/metabolismo , Rhizobium/inmunología , Epítopos , Glucosamina/análogos & derivados , Glucosamina/análisis , Lipopolisacáridos/análisis , Lipopolisacáridos/inmunología , Plantas/microbiología , Quercetina/análogos & derivados , Rhizobium/crecimiento & desarrollo
9.
J Supramol Struct Cell Biochem ; 16(2): 133-8, 1981.
Artículo en Inglés | MEDLINE | ID: mdl-7029001

RESUMEN

Trifoliin A, a Rhizobium-binding glycoprotein from white clover, was detected in sterile clover root exudate by a sensitive immunofluorescence assay employing encapsulated cells of Rhizobium trifolii 0403 heat-fixed to microscope slides. Its presence in root exudate was further examined by immunoaffinity chromatography. The binding of trifoliin A to cells was specifically inhibited by the hapten, 2-deoxyglucose. Significantly higher quantities of trifoliin A were detected in root exudate of seedlings grown hydroponically in nitrogen-free medium than in rooting medium containing 15 mM NO-3, a concentration which completely suppressed root hair infection by the nitrogen-fixing symbiont. The presence of trifoliin A in root exudate may make it possible for recognition processes to occur before the microsymbiont attaches to its plant host.


Asunto(s)
Flavonoides/análisis , Lectinas/análisis , Plantas/inmunología , Quercetina/análisis , Rhizobium/inmunología , Cromatografía de Afinidad , Técnica del Anticuerpo Fluorescente , Lectinas de Plantas , Quercetina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA