Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(4): 5450-5464, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209507

RESUMEN

Challenging experiments for tests in fundamental physics require highly coherent optical frequency references with suppressed phase noise from hundreds of kHz down to µHz of Fourier frequencies. It can be achieved by remote synchronization of many frequency references interconnected by stabilized optical fibre links. Here we describe the path to realize a delocalized optical frequency reference for spectroscopy of the isomeric state of the nucleus of Thorium-229 atom. This is a prerequisite for the realization of the next generation of an optical clock - the nuclear clock. We present the established 235 km long phase-coherent stabilized cross-border fibre link connecting two delocalized metrology laboratories in Brno and Vienna operating highly-coherent lasers disciplined by active Hydrogen masers through optical frequency combs. A significant part (up to tens of km) of the optical fibre is passing urban combined collectors with a non-negligible level of acoustic interference and temperature changes, which results in a power spectral density of phase noise over 105 rad2· Hz-1. Therefore, we deploy a digital signal processing technique to suppress the fibre phase noise over a wide dynamic range of phase fluctuations. To demonstrate the functionality of the link, we measured the phase noise power spectral density of a remote beat note between two independent lasers, locked to high-finesse stable resonators. Using optical frequency combs at both ends of the link, a long-term fractional frequency stability in the order of 10-15 between local active Hydrogen masers was measured as well. Thanks to this technique, we have achieved reliable operation of the phase-coherent fibre link with fractional stability of 7 × 10-18 in 103 s.

2.
Opt Lett ; 47(21): 5704-5707, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219308

RESUMEN

The wide span and high density of lines in its rovibrational spectrum render hydrogen cyanide a useful spectroscopic media for referencing absolute frequencies of lasers in optical communication and dimensional metrology. We determined, for the first time to the best of our knowledge, the molecular transitions' center frequencies of the H13C14N isotope in the range from 1526 nm to 1566 nm with 1.3 × 10-10 fractional uncertainty. We investigated the molecular transitions with a highly coherent and widely tunable scanning laser that was precisely referenced to a hydrogen maser through an optical frequency comb. We demonstrated an approach to stabilize the operational conditions needed to maintain the constantly low pressure of the hydrogen cyanide to carry out the saturated spectroscopy with the third-harmonic synchronous demodulation. We demonstrated approximately a forty-fold improvement in the line centers' resolution compared to the previous result.

3.
Micromachines (Basel) ; 11(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012859

RESUMEN

In this work, we demonstrate the simple fabrication process of AlN-based piezoelectric energy harvesters (PEH), which are made of cantilevers consisting of a multilayer ion beam-assisted deposition. The preferentially (001) orientated AlN thin films possess exceptionally high piezoelectric coefficients d33 of (7.33 ± 0.08) pC∙N-1. The fabrication of PEH was completed using just three lithography steps, conventional silicon substrate with full control of the cantilever thickness, in addition to the thickness of the proof mass. As the AlN deposition was conducted at a temperature of ≈330 °C, the process can be implemented into standard complementary metal oxide semiconductor (CMOS) technology, as well as the CMOS wafer post-processing. The PEH cantilever deflection and efficiency were characterized using both laser interferometry, and a vibration shaker, respectively. This technology could become a core feature for future CMOS-based energy harvesters.

4.
Opt Express ; 27(7): 9361-9371, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045088

RESUMEN

In this contribution, we investigate the properties of antireflective coatings on iodine-filled absorption cell windows. These coatings are subject to high temperatures during the cell production process and are in direct contact with the absorption medium, which influences their optical performance. We tested the thermal resistance of TiO2- and Ta2O5- based coatings produced using conventional electron beam evaporation (e-beam) and ion-assisted deposition (PIAD). We prepared a set of iodine-filled absorption cells that were used to test the coatings' resistance to iodine vapors. We show that the choice of coating materials, coating methods, and a well-chosen bakeout procedure can mitigate any unwanted effects, such as temperature-induced spectral shifts and optical losses inhomogeneities or settling of the absorption medium in the coating.

5.
Sensors (Basel) ; 17(1)2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28067834

RESUMEN

This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

6.
Sensors (Basel) ; 16(9)2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27608024

RESUMEN

The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm.

7.
Appl Opt ; 53(31): 7435-41, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25402909

RESUMEN

We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

8.
Sensors (Basel) ; 14(1): 1757-70, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24448169

RESUMEN

A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).

9.
Sensors (Basel) ; 14(1): 877-86, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24451463

RESUMEN

We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) µm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment.

10.
Sensors (Basel) ; 13(2): 2206-19, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23435049

RESUMEN

In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

11.
Opt Express ; 20(25): 27830-7, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23262728

RESUMEN

We present a concept of suppression of the influence of variations of the refractive index of air in displacement measuring interferometry. The principle is based on referencing of wavelength of the coherent laser source in atmospheric conditions instead of traditional stabilization of the optical frequency and indirect evaluation of the refractive index of air. The key advantage is in identical beam paths of the position measuring interferometers and the interferometer used for the wavelength stabilization. Design of the optical arrangement presented here to verify the concept is suitable for real interferometric position sensing in technical practice especially where a high resolution measurement within some limited range in atmospheric conditions is needed, e.g. in nanometrology.


Asunto(s)
Aire , Interferometría/métodos , Modelos Teóricos , Nanotecnología/métodos , Refractometría/métodos , Atmósfera , Diseño de Equipo , Interferometría/instrumentación , Interferometría/normas , Rayos Láser , Nanotecnología/instrumentación , Nanotecnología/normas , Refractometría/instrumentación , Refractometría/normas
12.
Sensors (Basel) ; 12(10): 14084-94, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23202037

RESUMEN

We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.


Asunto(s)
Aire/análisis , Refractometría/instrumentación , Atmósfera/análisis , Ambiente Controlado , Monitoreo del Ambiente/instrumentación , Interferometría/instrumentación , Interferometría/métodos , Refractometría/métodos
13.
Sensors (Basel) ; 11(8): 7644-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164036

RESUMEN

The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10(-8) has been achieved.


Asunto(s)
Interferometría/métodos , Nanotecnología/métodos , Física/métodos , Aire , Algoritmos , Calibración , Microscopía/instrumentación , Microscopía/métodos , Nanoestructuras , Fibras Ópticas , Refractometría , Reproducibilidad de los Resultados , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...