Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410634, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008635

RESUMEN

A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shape1s and properties. However, the lack of well-defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation-assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme-triggered assembly (ETA) for the on-demand formation of well-defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo-electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non-natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures.

2.
ACS Cent Sci ; 10(1): 138-142, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292611

RESUMEN

In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.

3.
Angew Chem Int Ed Engl ; 62(47): e202310357, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37823670

RESUMEN

Peptides and nucleic acids with programmable sequences are widely explored for the production of tunable, self-assembling functional materials. Herein we demonstrate that the primary sequence of oligosaccharides can be designed to access materials with tunable shapes and properties. Synthetic cellulose-based oligomers were assembled into 2D or 3D rod-like crystallites. Sequence modifications within the oligosaccharide core influenced the molecular packing and led to the formation of square-like assemblies based on the rare cellulose IVII allomorph. In contrast, modifications at the termini generated elongated aggregates with tunable surfaces, resulting in self-healing supramolecular hydrogels.


Asunto(s)
Celulosa , Oligosacáridos , Celulosa/química , Oligosacáridos/química , Péptidos/química , Hidrogeles/química
4.
Beilstein J Org Chem ; 19: 1015-1020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440787

RESUMEN

Automated glycan assembly (AGA) affords collections of well-defined glycans in a short amount of time. We systematically analyzed how parameters connected to the solid support affect the AGA outcome for three different glycan sequences. We showed that, while loading and reaction scale did not significantly influence the AGA outcome, the chemical nature of the linker dramatically altered the isolated yields. We identified that the major determinants of AGA yields are cleavage from the solid support and post-AGA purification steps.

5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834837

RESUMEN

T-type calcium (CaV3) channels are involved in cardiac automaticity, development, and excitation-contraction coupling in normal cardiac myocytes. Their functional role becomes more pronounced in the process of pathological cardiac hypertrophy and heart failure. Currently, no CaV3 channel inhibitors are used in clinical settings. To identify novel T-type calcium channel ligands, purpurealidin analogs were electrophysiologically investigated. These compounds are alkaloids produced as secondary metabolites by marine sponges, and they exhibit a broad range of biological activities. In this study, we identified the inhibitory effect of purpurealidin I (1) on the rat CaV3.1 channel and conducted structure-activity relationship studies by characterizing the interaction of 119 purpurealidin analogs. Next, the mechanism of action of the four most potent analogs was investigated. Analogs 74, 76, 79, and 99 showed a potent inhibition on the CaV3.1 channel with IC50's at approximately 3 µM. No shift of the activation curve could be observed, suggesting that these compounds act like a pore blocker obstructing the ion flow by binding in the pore region of the CaV3.1 channel. A selectivity screening showed that these analogs are also active on hERG channels. Collectively, a new class of CaV3 channel inhibitors has been discovered and the structure-function studies provide new insights into the synthetic design of drugs and the mechanism of interaction with T-type CaV channels.


Asunto(s)
Poríferos , Ratas , Animales , Miocitos Cardíacos/metabolismo
6.
Org Biomol Chem ; 19(1): 233-247, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33283815

RESUMEN

A one-pot aziridine opening reaction by glycosyl thiols generated in situ from the corresponding anomeric thio-acetates affords thio-glycosides with a pseudo-disaccharide structure and an N-linked tether. The scope of the one-pot aziridine opening reaction was explored on a series of mono- and disaccharides, creating a class of pseudo-glycosidic compounds with potential for further functionalization. Unexpected anomerization of glycosyl thiols was observed under the reaction conditions and the influence of temperature, base and solvent on the isomerization was investigated. Single isomers were obtained in good to acceptable yields for mannose, rhamnose and sialic acid derivatives. The class of thio-glycomimetics synthesized can potentially be recognized by various lectins, while presenting hydrolytic and enzymatic stability. The nitrogen functionality incorporated in the glycomimetics can be exploited for further functionalization, including tethering to linkers, scaffolds or peptide residues.

7.
Mar Drugs ; 16(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513862

RESUMEN

The first total synthesis of the marine bromotyrosine purpurealidin I (1) using trifluoroacetoxy protection group and its dimethylated analog (29) is reported along with 16 simplified bromotyrosine derivatives lacking the tyramine moiety. Their cytotoxicity was evaluated against the human malignant melanoma cell line (A-375) and normal skin fibroblast cells (Hs27) together with 33 purpurealidin-inspired simplified amides, and the structure⁻activity relationships were investigated. The synthesized simplified analogs without the tyramine part retained the cytotoxic activity. Purpurealidin I (1) showed no selectivity but its simplified pyridin-2-yl derivative (36) had the best improvement in selectivity (Selectivity index 4.1). This shows that the marine bromotyrosines are promising scaffolds for developing cytotoxic agents and the full understanding of the elements of their SAR and improving the selectivity requires further optimization of simplified bromotyrosine derivatives.


Asunto(s)
Antineoplásicos/farmacología , Organismos Acuáticos/química , Desarrollo de Medicamentos , Poríferos/química , Tirosina/análogos & derivados , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos , Humanos , Estructura Molecular , Piridinas/química , Relación Estructura-Actividad , Tirosina/síntesis química , Tirosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...