Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1048609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180385

RESUMEN

Although wetlands contain a disproportionately high amount of earth's total soil carbon, many regions are still poorly mapped and with unquantified carbon stocks. The tropical Andes contain a high concentration of wetlands consisting mostly of wet meadows and peatlands, yet their total organic carbon stocks are poorly quantified, as well as the carbon fraction that wet meadows store compared to peatlands. Therefore, our goal was to quantify how soil carbon stocks vary between wet meadows and peatlands for a previously mapped Andean region, Huascarán National Park, Peru. Our secondary goal was to test a rapid peat sampling protocol to facilitate field sampling in remote areas. We sampled soil to calculate carbon stocks of four wetland types: cushion peat, graminoid peat, cushion wet meadow, and graminoid wet meadow. Soil sampling was conducted by using a stratified randomized sampling scheme. Wet meadows were sampled to the mineral boundary using a gouge auger, and we used a combination of full peat cores and a rapid peat sampling procedure to estimate peat carbon stocks. In the lab, soils were processed for bulk density and carbon content, and total carbon stock of each core was calculated. We sampled 63 wet meadows and 42 peatlands. On a per hectare basis, carbon stocks varied strongly between peatlands (avg. 1092 MgC ha-1) and wet meadows (avg. 30 MgC ha-1). Overall, wetlands in Huascarán National Park contain 24.4 Tg of carbon with peatlands storing 97% of the total wetland carbon and wet meadows accounting for 3% of the wetland carbon in the park. In addition, our results show that rapid peat sampling can be an effective method for sampling carbon stocks in peatlands. These data are important for countries developing land use and climate change policies as well as providing a rapid assessment method for wetland carbon stock monitoring programs.

2.
Front Plant Sci ; 14: 1102340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223780

RESUMEN

The high-elevation peatlands of the páramos of the northern Andes constitute a diverse environment that harbors large numbers of species and several types of plant communities along altitudinal, latitudinal, and environmental gradients. However, little is known about the structure and functioning of these ecosystems, including peatland vegetation types and their relative contribution to the production and accumulation of peat soils. In this paper we characterized the structure of peatland plant communities of the humid páramos of northern Ecuador by describing the distribution of plant growth-forms and their aboveground biomass patterns. Along an elevation gradient of 640 m we sampled vegetation in 16 peatlands and aboveground biomass in four peatlands. Three distinct peatland vegetation types were identified: High elevation Cushion peatlands, dominated by Plantago rigida and Distichia muscoides, Sedge and rush peatlands dominated by Carex spp. and Juncus spp., and Herbaceous and shrubby peatlands, with a more heterogenous and structurally complex vegetation. In terms of aboveground biomass, we found an 8-fold reduction in the higher peatlands compared to the lower sites, suggesting that the steep elevational gradients characteristic of Andean environments might be crucial in structuring the physiognomy and composition of peatland vegetation, either through its effects on temperature and other environmental factors, or through its effects on the age and development of soils. Additional studies are needed to evaluate the potential effects of temperature, hydrology, micro-topography, geological setting, and land-use, which are likely to influence vegetation patters in these peatlands.

3.
Glob Chang Biol ; 23(12): 5412-5425, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28675672

RESUMEN

Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2 ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.


Asunto(s)
Carbono/química , Bosques , Tecnología de Sensores Remotos , Suelo/química , Humedales , Ecuador , Monitoreo del Ambiente , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...